Appendix 8
WEIGHTING OF INDEPENDENT ESTIMATES

The following procedure is suggested for adjusting flow frequency
estimates based upon short records to reflect flood experience in
nearby hydrologically similar watersheds, using any one of the various
generalization methods ment%oned in V.C.1. The procedure is based upon
the assumption that the estimates are independent, wh1ch for practical
purposes is true in most situations.

If two independent eéstimates are weighted inversely proportional to
their variance, the variance of the weighted average, z, is less than
the variance of either estimate. According to Gilroy (30), if

X £y, - o)

Vy + Vx

then

vay

v, = — z :[Vx A 2r\/V;ﬂ;] (8-2)

(vx + vy

in which Vx, Vy,-ahd Vz are the variances of x, y, and z respectively,
and r is the cross correlation coefficient between values of x and
values of y. Thus, if two estimates are independent, r is zero and

vy
Vz = XYy . (8-3)
VX + Vy @

As the variance of flood events at selected exceedance probabilities
computed by the Pearson Type III procedure is inversely proportional to
the number of annual events used to compute the statistics (25), equation
(8-3) can be written

(C/N) (C/Ny)

c
C/N, = = , (8-4)
z C/Nx + C/Ny Nx ¥ Ny

in which C is a constant, Nx and Ny are the number of annual events used
to compute x and y respectively, and NZ is the number of events that
would be required to give a flood event at the selected exceedance
probabilities with a variance equivalent to that of z computed by
equation 8-1. Therefore,
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Nz = NX + Ny (8-5)
From equation 8-1, _
Y+
b SNy YO L) vy

- ¥ = T
C/N C/N‘y NX Ny

(8-6) F

X
‘ Equation 8-6 can be used to weight independent estimates of the logarithms
of flood discharges at selected probabilities and equation 8-5 can be used
to appraise the accuracy of the weighted average. As a flood frequency
discharge estimated by generalization tends to be independent of that obtained
from the station data, such weighting is often justified particularly if the
stations used in the generalization cover an area with a radius of over 100
miles or if their period of record is Tong in comparison with that at the
station for which the estimate is being made. For generalizations based on
stations covering a smaller area or with shorter records, the accuracy of
the weighted average given by equation 8-6 is less than given by equation 8-5.

For cases where the estimates from the generalization and from the
station data are not independent, the accukacy‘of the weighted estimate is
reduced depending on the cross correlation of the estimates.
Given a peak discharge of 1,000 cfs with exceedance probability of 0.02

from a generalization with an accuracy equivalent to. an estiméte based on a
10-year record, for example, and an independent estimate of 2,000 cfs from

4F15 annual peaks observed at the site, the weighted average would be given
by substitution in equation 8-6 as follows: +

- 10(70g 1000)22 15(T0g 2000)

Log 0.02 = 3.181

from which Q.OZ is 1,520 cfs. By equation 8-5 this estimate is as good
as would be obtained from 25 annual peaks.

If an expected probability adjustment is to be applied to a weighted
estimate, the adjustment to probability should be the same as that appli-

. cable to samples from normal distributions as described in Appendix 11, but
N should be that for a sample size that gives equivalent accuracy. Thus,
in the preceding example, the expected probability adjustment would be that
for a sample of size 25 taken from a novmal distribution.
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Appendix 9

CONFIDENCE LIMITS

The record of annual peak flows at a site is a random sampie of the
underlying population of annual peaks and can be used to estimate the
frequency curve of that population. If the same size random sample could
be selected from a different period of time, a different estimate of the
underlying population frequency curve probably would result. Thus, an
estimated flood frequency curve can be only an approximation to the true
frequency curve of the underlying population of annual flood peaks. To
gauge the accuracy of this approximation, one may construct an interval
or range of hypothetical frequency curves that. with a high degree of
confidence, contains the population frequency curve. Such intervals are
called confidence intervals and their end points are called confidence
limits.

This appendix explains how to construct confidence intervals for
flood discharges that have specified exceedance probabilities. To this
end, let Hg denote the true or population logarithmic discharge that has
exceedance probability P. Upper and lower confidence limits for K$ » with
confidence level ¢, are defined to be numbers UP,C{K) and LP,C{KJ’ based
on the observed flood records. X, such that the upper confidence 1imit
UF!E[x] lies above KE with probability ¢ and the lower limit LP,c{K} lies
below IE with probability c. That is, the confidence limits have the
property that

Probability {Up .(X) > X5} =c (9-1a)
Probability {LP’C{E} < XElo=c (9-1b)
.K.
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Explicit formulas for computing the confidence 1imits are given below;
the above formulas simply explain the statistical meaning of the confidence
limits.

The confidence 1imits defined above are called one-sided confidence
1imits because each of them describes a bound or 1imit on just one side
of the population p-probability discharge. A two-sided confidence interval
can be formed from the overlap or union of the two one-sided intervals,
as follows:

Probability {Lp ((X) <X§<Up (X)} = 2c-1 (9-2)

Thus, the union of two one-sided 95-percent confidence intervals
is a two-sided 90-percent interval. It should be noted that the two-
sided interval so formed may not be the narrowest possible interval
with that confidence level; nevertheless, it is considered satisfactory for
use with these guidelines.

. It may be noted in the above equations that Up,c(X) can lie above

Xp if and only if UP,c(X) lies above a fraction (1-P) of all possible
floods in the population. In quality control terminology, Up,c(X) would

be called an upper tolerance 1imit, at confidence level c, for the
proportion (1-P) of the population. Similarly, LP’C(X) would be a Tower
tolerance limit for the proportion (P). Because the tolerance 1imit
terminology refers to proportions of the population, whereas the confidence-
Timit terminology refers directly to the discharge of interest, the
confidence-1imit terminology is adopted in these guidelines.

Explicit formulas for the confidence 1imits are derived by specifying
the general form of the 1imits and making additional simplifying assump-
tions to analyze the relationships between sample statistics and population
statistics. The general form of the confidence limits is specified as:

X+S (Kg C> (9-3a)

X + S(K‘[,,c> (9-3b)
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in which X and S are the logarithmic mean and standard deviation of
the final estimated 1og Pearson Type III frequency curve and Kg,c and Kt,c
are upper and Tower confidence coefficients.

The confidence coefficients approximate the non-central t-distribution.
The non-central t-variate can be obtained in tables (41, 32), although
the process is cumbersome when G,, Ts non-zero. More convenient is the use
of the following approximate formulas (32, pp. 2-15), based on a large sample
approximation to the non-central t-distribution (42):

2
v e.P "J KGw,P - ab
K - 3 (9-4a)
2
) KGW,P - ‘J KGW,P - ab
KP,c ) a (9-4b)
in which
2
a=1- ?—(—N—_-l—)— (9-5)
z2
_ vl c ,
b = KGw,P "N (9-6)

and z, is the standard normal deviate (zero-skew Pearson Type III deviate)
with cumulative probability c (exceedance probability 1-c). The systematic
record Tength N is deemed to control the statistical reliability of

the estimated frequency curve and is to be used for calculating confidence
1imits even when historic information has been used to estimate the
frequency curve.

The use of equations 9-3 through 9-6 is illustrated by calculating
95-percent confidence 1imits for X;.Ol’ the 0.01 exceedance probability
flood, when the estimated frequency curve has logarithmic mean, standard
deviation, and skewness of 3.00, 0.25, and 0.20, respectively based on 50
years of systematic record.
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Z = -
¢ T 1645 kg P 24723
\2
a =1 - LB g7
2
b = (2.4723)% - LLEBL_ 6 058
- _ _2.4723 + N(2.4723)% - (0.9724)(6.058)
0.01, 0.95 0.9724
= 3.026
L 5 -
Ko,o1, 0.95 = 2.4723 - \RE-4723) - (0.9724)(5.058)
0.9724
= 2.059
Ys.01, 0.95 (X) = 3.00 + (0.25)(3.026) = 3.756
Lo.o1. 0.95 (X) = 3.00 + (0.25)(2.059) = 3.515

The corresponding Timits in natural units (cubic feet per second)
are 3270 and 5700; the estimated 0.01 exceedance probability flood is
4150 cubic feet per second.

Table 9-1 is a portion of the non-central t tables (43) for

a skew of zero and can be used to compute KUP c and KL

P.c for selected
values of P and c when the distribution of logarithms of the annual
peaks is normal (i.e., GW=0).

An example of using table 9-1 to compute confidence limits 1is as
follows: Assume the 95-percent confidence Timits are desired for X*y g7
the 0.071 exceedance probability flood for a frequency curve with logarithmic
mean, standard deviation and skewness of 3.00, 0.25 and 0.00, respectively,
‘based on 50 years of systematic record.



* U
K 0.01, 0.95 = 2.862 Found by entering table 9-1 with confidence

level 0.05, systematic record length 50 and
exceedance probability 0.01.

] _

K 0.01, 0.95 = 1.936 Found by entering table 9-1 with confidence
level 0.95,systematic record length 50 and
exceedance probability 0.01.

UO.O], 0.95 (X) = 3.00 +0.25(2.862) = 3.715

L = 3.00 + 0.25(1.936) = 3.484

0.01, 0.95 (X)

The corresponding Timits in natural units (cubic feet per second)
are 3050 and 5190; the estimated 0.01 exceedance probability ficod is
3820 cubic feet per second. ' ¥
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Appendix 9 Notation

upper confidence‘1imit in log units

Tower confidence 1imit in Tlog units

exceedance probability

confidence level

population logarithmic discharge for exceedance probability P
mean logarithm of peak flows

standard deviation of logarithms of annual peak discharges
Pearson Type III coordinate expressed in number of standard
deviations from the mean for weighted skew (GW) and exceedance
probability (P).

weighted skew coefficient

upper confidence coefficient

Tower confidence coefficient

systematic record length

is the standard normal deviate >
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Confi=-
dence
Lewvel
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+05

Systematic
Record
Length

N

10
15
20
25
an
40
50
60
70
BO
80
100

10
15
20
25
30
40
50
60
70
80
a0
100

«N02

b.178
5.147
4,675
4,398
£,.212
3.975
3.826
3,723
3,647
3.587
31538
3.498

4.862
4.304
4.033
3.868
3.755
3.608
3.515
3. 448
3.399
3.360
3.328
3.301

CONFIDENCE LIMIT DEVIATE VALUES FOR NORMAL DISTRIBUTION

005

5.572
4,639
4,212
3-gﬁﬂ
3.792
3.577
3.442
3,347
3,278
3.223
3,179
3.143

4,379
3.874
3.628
3.478
3.376
3. 242
3.157
3.0096
3.051
3:016
?.987
2.963

L0L0

5.074
4,222
3.832
3.601
3,447
3.249
3.125
3.038
2,974
2,924
2.883
2.850

3.981
3.520
3.295
3,158
3.064
2.941
2.862
2,807
2,765
2,733
2.706
2.684

D20

4,535
3.770
3.419
3.211
3.071
2,893
2.781
2,702
2,644
2.599
2.561
2,531

3,549
3.138
2.934
2.809
2,724
2.613
2,542
2,402
2.454
2,425
2.400
2.380

TABLE 9-1

EXCEENANCE PROBABILITY

- 040

3.942
3.274
2.965
2.782
2.658
2.500
2,401
2,331
2,280
2,239
2.206
2,179

3.075
2,713
2.534
2,425
2'35(}
2,251
1,188
2.143
2.110
2.083
2.0482
E‘UE‘,!‘

. 100

3.048
2,521
2,276
2.129
2.030
1.902
1,821
1,764
1.722
1.688
1,661
1,639

2,355
2,068
1.926
1,838
1.777
1,697
1.646
1,809
1.581
1.559
1.542
1.527

. 200

2,243
1-8&1
1.651
1.536
1.457
1,355
1.290
1.244
1.210
1.183
1,160
1.1&2

1.702
1.482
1.370
1.301
1.252
1.188
1.146
1.116
1.093
1.076
1.061
1.049

. 300

.892
678
+ 368
498
450
. 384
« 340
+ 309
.285
+ 265
=250
.236

580
«455
=387
+342
.310
. 266
«237
«2186
.199
.186
-175
.166

. 800

-, 107
-.236
-.313
-.364
-.403
- 457
=496
=524
—.545
=.563
=578
-:591

-.317
=: 406
=_ &R0
=. 497
=.525
-.565
=-.592
—.612
=-.629
-. 642
-.652
-. 662

900

-.508
-.629
-.705
=757
-.797
-.854
-. 894
=.924
-.948
-+ 968
~-.984
-, 998

'1?12
-.802
=.R5R
-. 898
-.928
=-.970
=1.000
-1,022
-1.040
-1.054
=1.066
-1.077

.950

-.804

-.929
-l.ﬂﬂa
_1-n64
-1.107
_lllﬁq
-1.212
=1.245
-1.272
=1.292
~1.311
-1.326

-liﬂl?
-1.114
=1.175
=-1.217
=1.250
=1.297
=-1.329
-1.354
=1.374
=-1.390
=-1.40%
-1.414

»990

-1.314
-1.458
=1,550
-1.616
-1.667
_11?41
-1.?93
_1.333
-1.865
-1.891
-1,913
_11932

-1,563
=-1.677
=1.749
=-1.801
-1.840
=1.896
-1.936
-1.966
-1.990
-2,010
=2.026
=2,040
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«23

Systemat I
Record

Length

10
15
20
25
30
40
50
60
70
80
20
100

10
15
20
25
30
&0
50
60
70
80
a0
100

. 002

4,324
3.936
3.743
3.623
3.541
3.433
3.363
3.312
3.276
3.247
3.223
3.203

3.599
3.415
3.320
3.261
3.220
3.1R5
3.129
3,105
3.085
3.070
3.058
3.048

005

3.889
3,539
3.36&
3.255
3.181
3.082
3.019
2,974
2,940
2,913

2.891
2.873

3.231
3,064
2,978
2,925
2,888
2.838
2,805
2,783
2.765
2,752
2,740
2,731

.010

3.532
3.212
3.052
2.952
2,884
2,793
2.‘?35
2.6094
2,662
2.638
2.618
2,601

2.927
2,775
2,697
2.648
2,614
2.5AR8
2,538
2,517
2,501
2,489
2,478
2,470

.020

3.144
2,857
2.712
2,623
2.561
2,479
2,426
2.389
2,360
2,338
2.319
2,305

2,596
2,460
2.390
2,346
2.315
2.274
2,247
2,227
2,213
2.202
2,192
2,184

TABLE 9-1 (CONTINUED)
CONFIDENCE LIMIT DEVIATE VALUES FOR NORMAL DISTRIRUTION

EXCEENANCE PROBABTLTTY

040

2.716
2,465
2.338
2,258
2.204
2,131
2.084
2.051
2.025
2,006
1.98%
1.976

2,231
2.112
2.050
2,011
1.984
1.948
1.924
1,907
1.893
1.883
1,875
1.868

100

2,066
1.867
1.765
1,702
1.657
1.598
1.559
1,532
1,511
li'ﬁ'g-ﬁ
1.481
1.470

1.671
1.577
1.528
1,497
1.475
1.445
1.425
1.411
1.401
1.392
1,386
1.380

. 200

1.474
1.320
1,240
1.190
1.154
1.106
1,075
1.052
1.035
1,021
1.010
1.001

1.155
1.083
1,045
1.020
1.002
.978
.962
« 950
« 942
«935
« 929
«925

. 500

+437
. 347
«297
<264
»239
206
184
« 167
+155
. 144
136
.129

.222
«179
«154
«137
.125
.108
.096
. 088
.081
.076
«071
.068

.800

-.429
-. 499
=541
=-.570
-+393
-.624
=, 645
—. 662
-.674
-.bB4
-.693
_-?ﬁl

=-.625
-, 661
—+683
-.699
-.710
=.726
-.738
*l?ﬁ?
=.733
-, 759
- 763
=. 767

900

-.528
-, 501
=.946
-.978
=-1.002
-1.036
-1.059
=1.077
=-1.091
_1|1D3
-1.112
=1.120

-1.043
-1.081
~1.104
-1.121
-1,133
-1.151
=-1.164
=1.173
-1.181
=1.187
-1.192
=1.196

.950

-1114&
=-1,222
-1.271
-1,306
_1i332
=1.369
~1.396
-1,415
-1.431
~1.444
=-1.454
-1.463

=1.382
=1,422
~1.4458
=1.466
-1.479
-1.490
-1.513
-1.523
=-1,532
=1.538
-1,544
=1.549

990

"1-?15
-l.ﬁﬂﬂ
-1.867
—1igﬂg
—l-gﬁﬂ
-1-985
-2.018
—2,042
-2.061
_ziﬂ??
=32.080
=2.101

-2,008
-2,055
-2.085
-2.106
-2.123
-2.147
-2.163
-2.176
-2.186
-2.194
-2.201
-2.207



confi=
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Systematic
Record
Length

N IGGE
10 2,508
15 2.562
20 2.597
25 2.621
30 2,641
40 2,668
50 2.688
60 2,702
70 2.714
g0 2.724
90 2,731
100 2,739
10 2.165
15 2.273
20 2,342
25 2,390
30 24426
40 2,479
50 2,517
&0 2. 544
70 2,567
80 2.585
an 1,600
100 2,613

. (0105

2,235
2.284
2.317
2,339
2.357
2.383
2,400
2.414
2.425
2_4A34
2,441
2-4&?

1,919
2,019
2.082
2,126
2,160
2,209
2,244
2,269
2,290
2.307
2,321
2.333

010

2,008
2.055
2,085
2.106
2.123
2.147
2.163
2.176
2.186
2.194
2,201
2,207

1.715
1,808
1.867
1.908
1. 340
1.986
2.018
2.042
2.061
2.077
2,090
2.101

020

1.75%
1.803
1.831
1.851
1.867
1,888
1.903
1.916
1.925
1.932
1.938
1,944

1,489
1.576
1.630
1.669
1.698
1.740

1.770
1,792

1.810
1.824
1.836
1,847

TARLE 9=1 (CONTINUED)
CONFIDENCE LIMIT DEVIATE VALUES FOR NORMAL DISTRIBUTION

EXCEEDANCE PROBABILITY

040

1.480
1,521
1.547
1.566
1.580
1.600
1.614
1.625
1.634
1.640
1.646
1,652

1,234
1.314
1.364
1.400
1,427
1.465
1.493
1.513
1.529
1.543
1.553
1.563

.100

1.{«}&3
1.081
1.104
1.121
1.133
1.151
1,164
1.173
1.181
1.187
1.192
1.196

+828
.901
.946
978
1,002
1.036
1.059
1.077
1.091
1.103
1.112
1,120

. 200

« 523
661
0683
.699
710
.726
« 738
.?ﬂ?
+153
. 750
.763
767

429
499
=541
.570
+«393
062&
+645
662
tﬁ?&
684
«B03
« 701

« 500

=222
-.179
-.154
-.137
=-.125
-. 108
_ngE
-.088
-.081
-.076
-.071
-, 068

=.437
=, 347
=297
-.264
-1239
-, 206
-,184
=, 167
-+155
-. 144
-.136
-.129

- 300

=1,155
-1.083
=-1.045
-1.020
=1.002
-.978
-.962
-.950
=.942
—.935
‘.929
-, 925

-1.474
=1.320
=1,240
-1.190
=1.154
-1.106
=1,075
=1,052
-1,035
-1,021
=1,010
'ltﬂﬂl

. 900

-liﬁ?l
-145??
=-1.528
-1,497
=1,475
=1.445
-1.425
-1,411
=1.401
-1.392
-1.386
-1.380

~2.066
=1.867
=] ,7hR5
=-1.702
=1,657
-1.598
-1,559
=1.552
=-1.511
=1.495
=1,481
_114?0

.950

_Eilﬂﬁ
=-1.991
=1,932
-1.895
-1.869
=1.834
-1,811
-1.795
-1,782
-1,772
-1.764
-1.758

-2.568
=-2.329
-2.208
-2.132
=-2.080
=2,010
=1.965
=1.933
-1.909
-1. 890
-1.874
-1.861

.990

_2192?
-2.775
*ZrﬁgT
-2.648
-2.614
-2.568
-2.538
=2,317
-2.501
-2.4890
~-2.478
_244?D

=3.532
-3,212
-3.052
-2,952
-2,884
=2.793
=2.735
=2.694
-2.662
-2.638
-2.618
-2, 601
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Confi=
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.95

0L-6

.99

Systematic
Becord
Length

N . 002
10 1.989
15 2.121
20 2,204
25 2.264
30 2,310
40 2.375
50 2.421
&0 2.45AR
70 2,484
g0 2.507
90 2.526
100 2,542
10 1,704
15 1.868
20 1.974
25 2,050
30 2,109
40 2.194
30 2.255
60 2,301
70 2.338
20 2.368
a0 2,394
100 2.416

.005

1.757
1.878
1.955
2,011
2,053
2,113
2,156
2.188
2,214
2.233
2,252
2,267

1,492
1.645
1.743
1.313
1.867
1.946
2,002
2,045
2,079
2,107
2,131
2,151

010

1.563
1.677
1.749
1.801
1.840
1.896
1.936
1.9AA
1,990
2,010
2.026
2,040

1;31#
1.458
1.550
1,616
1.667
1.741
1,793
1,833
1.865
1.891
1.913
1,932

<20

1.348
1.454
1.522
1.569
1.605
1.657
1.654
1.722
1.745
1,762
1.778
1,791

1.115
1.251
1.336
1.399
1.446
1.515

1,563

1,600
1.630
1-553
1.674
lnﬁgl

TARLE 9-1 (CONTINUED)
CONFIDEWNCE LIMIT DEVIATE VALUES FOR NORMAL DISTRIBUTION

EXCEEDANCE PROBARILITY

4l

1.104
1.203
1.266
1.309
1.342
1,391
1.424
1.450
1.470
1,487
L.500
1,512

« 886
1.04
1.004
1.152
1.196
1.259
1.304
1.337
1.365
1,387
1.405
1,421

100

712
802
1353
.898
028
970
1.000
1.022
1.040
1,054
1.066
1.077

« 508
.629
.705
+ 137
797
.854
894
924
948
. 968
. 984
. 998

« 200

+317
I&'DE
+460
« 497
« 525
. 565
592
L6127
.629
. 642
632
. 662

107
.236
.313
.364
403
457
496
« 524
545
. 563
578
.591

. 500

=.580
-.455
-.387
-. 342
‘1310
-.266
-, 237
-. 714
-.199
-4156
-.175
-.166

-,892
-.h78
~.568
-,498
=450
-. 184
-. 340
— 309
-.285
-.265
—-. 250
"izjﬁ

300

-1,702
-1.482
-1.370
-1.301
-1.252
-1.188
_lllhﬁ
-1.114A
-1.093
=-1,076
-1.061
_loﬂ&g

=-2.243
_113&1
-1.651
=-1.536
=1.457
_1|355
-1.290
—1.244
_1121ﬂ
-1.183
-1.160
-111&2

. 900

=2,355
=2,068
-1.926
-1.838
-1.777
-1.697
~1.646
=1.A049
-1.581
-1,559
-14542
—1-52?

-3.048
-2.521
=2.276
-2,129
-2.030
-1.902
-1.821
-1,764
=1.722
-llﬁﬁﬁ
=1.661
-1.639

=930

-2,911
-2,566
-2,396
-2.292
-2,220
=2%123
~2.065
-2.022
-1.990
=1,964
-1.944
-1,927

-3,738
-3,.102
=2.808
-2,633
=2,3515
_21364
-2.269
-2,202
=2.153
-2.114
-1.082
-2.056

.990

-3.9381
=3,520
-3.295
-3.158
-3.064
=2,941
-1,862
-2 . 807
-2.765
-2,.733
=2.706
=2,684

-5.074
-4,222
-3.832
-3.601
-3 447
-3.249
-3.125
-3,038
-2.9?&
-2.924
=2.883
=2, 850
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Appendix 10
RISK

This appendix describes the recommended procedures for estimating
‘the risk incurred when a location is occupied for a period of years. As
used in this guide, risk is defined as the probability that one or more
events will exceed a given flood magnitude within a specified period of
years. ‘
Two basic approaches may be used to compute risk, nonparametric
methods ([(e.g., (19)1 and parametric methods [(e.g., (20)]. Parametric
methods which use the binomial distribution require assuming that the
annual exceedance frequency is exactly known. The difference between
methods is not great, particularly in the range of usual interest;
consequently, use of the binomial distribution is recommended because of
ease of comprehension and application.

The binomial expression for estimating risk is:

Ry = TT‘%%TTTT pl (1-p)N-1 (10-1)

in which R is the estimated risk of obtaining in N years exactly I
number of flood events exceeding a flood magnitude with annual exceedance
probability P. ,

When 1 equals 0 equation 10-1 reduces to:

R, = (1-P)N (10-2)

in which Ro is the estimated probability of nonexceedance of the selected
flood magnitude in N years. From this the risk R of one or more exceedance
becomes

R (1 or more) = 1 - (1-P)N | (10-3)
Risk of 2 or more exceedances, R (2 or more), is
R(2 or more) = R-Ry = R-NP (1-P)N'] (10-4)

%  Some solutions are illustrated by the following table and figure %
10-1.
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BINOMIAL RISK TABLE

TIME *% RISK (PERCENT) ** ** RISK (PERCENT) **
P=0.100 P=0.050
NONE ONE OR TWO OR NONE ONE OR  TWO OR
MORE MORE MORE MORE
10 35 65 26 60 40 9
20 12 88 61 36 64 26
30 4 96 82 21 79 45
40 1 99 92 13 87 60
50 1 99 97 8 92 72
60 0 100 99 5 95 81
70 0 100 99 3 97 87
80 0 100 100 2 98 91
90 0 100 100 1 99 94
100 0 100 100 1 99 96
110 0 100 100 0 100 98
120 0 100 100 0 100 98
150 0 100 100 0 100 100
200 0 100 100 0 100 100
TIME ** RISK (PERCENT) ** ** RISK (PERCENT) **
P=0.040 P=0.020
NONE ONE OR TWO OR NONE ONE OR  TWO OR
MORE MORE MORE MORE
10 66 34 6 82 18 2
20 44 56 19 67 33 6
30 29 71 34 55 45 12
40 20 80 48 45 55 19
50 13 87 60 36 64 26
60 9 91 70 30 70 34
70 6 94 78 24 76 41
80 4 96 83 20 80 48
90 3 97 88 16 84 54
100 2 98 91 13 87 60
110 1 99 94 11 89 65
120 1 99 96 9 91 69
150 0 100 98 5 95 80
200 0 100 100 2 98 91

NOTE: TABLE VALUES ARE ROUNDED TO NEAREST PERCENT
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BINOMIAL RISK TABLE

TIME *% RISK (PERCENT) ** ** RISK (PERCENT) **
=0.010 : P=0.005
NONE ONE OR  TWO OR NONE ONE OR TWO OR
MORE MORE MORE MORE
10 90 10 0 95 5 0
20 82 18 2 90 10 0
30 74 26 4 86 14 1
40 67 33 6 82 18 2
50 61 39 9 78 22 3
60 55 45 12 74 26 4
70 49 51 16 70 30 5
80 45 55 19 67 33 6
90 40 60 23 64 36 8
100 37 63 26 61 39 9
110 33 67 30 58 42 11
120 30 70 34 55 45 12
150 22 78 44 a7 53 17
200 13 87 60 37 63 26
TIME *% RISK (PERCENT) ** ** RISK (PERCENT) **
P=0.002 P=0.001
NONE ONE OR~ TWO OR NONE ONE OR TWO OR
MORE MORE MORE MORE
10 98 2 0 99 1 0
20 96 4 0 98 2 0
30 94 6 0 97 3 0
40 92 8 0 96 4 0
50 90 10 0 95 5 0
60 89 11 1 94 6 0
70 87 13 1 93 7 0
80 85 15 1 92 8 0
90 84 16 1 91 9 0
100 82 18 2 90 10 0
110 80 20 2 90 10 1
120 79 21 2 89 11 1
150 74 26 4 86 14 1
200 67 33 6 82 18 2

NOTE: TABLE VALUES ARE ROUNDED TO NEAREST PERCENT
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Appendix 11
EXPECTED PROBABILITY

The principle of gambling based upon estimated probabilities can be
applied to water resources development decisions. However, because
probabilities must be inferred from random sample data, they are uncertain
and mathematical expectation cannot be computed exactly as errors due to
uncertainty do not necessarily compensate. For example, if the estimate
based on sample data is that a certain flood magnitude will be exceeded
on the average once in 100 years, it is possible that the true exceedance
could be three or four more times per hundred years, but it can never be
less than zero times per hundred years. The impact of errors in one
direction due to uncertainty can be quite different from the impact of
errors in the other direction. Thus, it is not adequate to simply be
too high half the time and too low the other half. It is necessary to
consider the relative impacts of being too high or too Tow.

It is possible to delineate uncertainty with considerable accuracy
when dealing with samples from a normal distribution. Therefore, when
flood flow frequency curves conform fairly closely to the logarithmic
normal distribution, it is possible to delineate uncertainty of frequency
. or probability estimates of flood flows.

Figure 11-1 is a generalized representation of the range of uncertainty
in probability estimates based on samples drawn from a normal population.
The vertical scale can represent the logarithm of streamflow. The
curves show the 1ikelihood that the true frequency of any flood magnitude
exceeds the value shown on the frequency scale. The curve labeled .50
is the curve that would be used for the best frequency estimate of a log-
normal population. From this curve a magnitude of 2 would be exceeded
on the average 30 times per thousand events. The figure also shows a 5
percent chance that the true frequency is 150 or more times per thousand
or a 5 percent chance that the true frequency is two times or less per
thousand events.

If a magnitude of 2.0 were selected at 20 independent locations,
the best estimate for the frequency is 3 exceedances per hundred years
for each location. The estimated total exceedance for all 20 locations
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would be 60 per 100 years. However, due to sampling uncertainties, true
frequencies for a magnitude of 2.0 would differ at each location and
total exceedances per 100 years at the 20 Tocations might be represented
by the following tabulation.

Exceedances Per 100 Years at Each of 20 Locations*

20 5 3 .9

12 5 2 .8

10 4 2 .5 Total Exceedances = Approximately 90
8 4 2 .3
7 3 1 .1

*Determined from Figure 11-1 using 0.05 parameter value increments
from .025 through .975.

- The total of these exceedances is about 90 per 100 years or 30 more than
obtained using the best probability estimate as the true probability at
each location. If, however, the mathematically derived expected proba-
bility function were used instead of the traditional "best" estimate we

~could read the expected probability curve of Figure 11-1 to obtain the
value of about 4.5 exceedances per 100 events. This value when applied
to each of the 20 locations would give an estimate of 90 exceedances per
100 years at all 20 locations. Thus, while the expected probability
estimate would be wrong in the high direction more frequently than in
the low direction, the heavier impacts of being wrong in the low direction
would compensate for this. It can be noted, at this point, that expected
probability is the average of all estimated true probabilities..

If a flood .frequency estimate could be accurately known--that is,
the parent population could be defined--the frequency distribution of
observed flood events would approach the parent population as the
number of observations approaches infinity. This is not the case where
probabilities are not accurately known. However, if the expected
probabilities as illustrated in Figure 11-1 can be computed, observed
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flood frequency for a large number of independent locations will approach
the estimated flood frequency as the number of observations approaches
infinity and the number of locations approaches infinity.

It appears that the answer to the question as to whether expected
probability should be used at a single location would be identical to
the answer to the question, "What is a fair wager for a single gamble?"
If the gamble must be undertaken, and ordinarily it must, then the
answer to the above question is that the wager should be proportional to
the expected return. In determining whether the expected probability
concepts should apply for a single location, the same 1ine of reasoning
would indicate that it should. : ‘

It has been shown (21) that for the normal distribution the expected
probability PN can be obtained from the formula |

Py = Prob [tN_1 > K (N—,“j—wl—‘)‘/z} C(11-1)

where Kn is the standard normal variate of the desired probability
of exceedance, N is the sample size, and tN_1 is the Student's t-sta-
tistic with N-1 degrees of freedom.
The actual calculations can be carried out using tables of
the t-statistic, or the modified values shown in Table 11-1 (31).
To use Table 11-1, enter with the sample size minus 1 and read
across to the column with the desired exceedance probability. The
value read from the table is the corrected plotting position.
The expected probability correction may also be calculated
from the following equations (34) which are based on Table 11-1.
For selected exceedance probabilities greater than 0.50, and a
given sample size, the appropriate PN value equals 1 minus the value in
Table 11-1 or the equations 11-2.



Exceedance Probability

.0001
001
.01
.05
.10
.30

For f]oods,with an exceedance probability of 0.01 based on
samples of 20 annual peaks, for example, the expected probabi]ity

Expected Probability, PN

.0001 (1.0 + 1600/N'*72)
.001 (1.0 + 280/N'+5)
.01 (1.0 + 26/N-16)

.05 (1.0 + 6/N-0%)
(1.0 + 3/n104

.3 (1.0 + 0.46/n0-925)

(11-2a)
(11-2b)
(11-2¢)
(11-2d)
(11-2e)
(11-2f)

of exceedance from equation 11-2c is (.01) (1.0 + 26/32.3) or 0.018.
Comparable equations for adjusting the
computed discharge upward to give a discharge for which the expected

Use of Table 11-1 gives 0.0174.

probability equals the exceedance probability are available (22).
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For use with samples drawn from a normal population

Table 11-1

TABLE OF P, VERSUS By

Pd)
N-1 .50 .30 .10 .05 .01 .001 .0001
1 .500  .372 .2h3 .20k 154 .121 .102
2 .500 347 .193 146 .090 .057 .043
3 .500 .336 .169 .119 .06l .035 .023
L .500 .330 .15k .10k .050 .024 .0137
5 .500 .325 146 .00k .ol2 L0179 ,0092
6 .500 .322 .138 088 .03 .0138 .0066
7 .500 .319 .135 .083 .032 .0113 .0050
8 .500 .317 .131 .079 .029 .009L .0039
9 .500 .316 127 076 - .027 .0082 .0031
10 .500 .315 125 .073 .025 .0072 ,0025
11 .500 .314 .123 071 .023 . 006k .0021
12 .500 .313 121 .069 .022 .0058 .0018
13 .500 .312 .119 .068 .021 .0052 .0016
1L 4500 .311 .118 L067 .020 .00L8 .001L
15 .500 .311 .117 066 .0196 .00l5 .0013
16 .500 .310 116 .065 .0190 .00k2 .0012
17 .500 .310 .115 .06l .0184 .00L0 .0011
18 .500 .309 114 .063 L0179 .0038 .0010
19 .500 .309 .113 062 L01T7h .0036 .00091
20 .500 .308 113 .062 .0170 003k 00084
21 .500 .308 112 061 .0167 .0033 .00078
22 .500 .308 L111 L061 .0163 .0031 .00073
23 .500 .307 L111 .060 .0161 .0030 .00068
ol .500 .307 .110 .060 .0158 .0029 . 0006k
25 .500 .307 .110 .059 .0155 .0028 .00060
26 .500 .306 .109 .059 .0153 .0027 .00057
27 .500 .306 .109 .059 L0151 - ,0026 .0005L
28 .500 .306 .109 .058 .0149 .0026 .00051
29 .500 .306 .108 .058 .01k7 .0025 .00049
30 .500 .306 .108 .058 L0145 .002kL .000k6
4o .500 .30L .106 .056 .0133 .0020 .00034
60 .500 .303 .104 .054 .0122 .0016 .00025
120 .500 .302 .102 .052 L0111 .0013 .00017
@ .500 .300 .100 .050 .0100 .0010 .00010
NOTE: Py values above are usable approximately with Pearson Type III

distributions having small skew coefficients.
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Appendix 12

FLOW DIAGRAM AND EXAMPLE PROBLEMS

*

The sequence of procedures recommended by this guide for defining flood
potentials (except for the case of mixed populations) is described in
the following outline and flow diagrams.

A. Determine available data and data to be used.
1. Previous studies
2. Gage records
3. Historic data
4, Studies for similar watersheds
5. Watershed model

B. Evaluate data.
1.  Record homogeneity
2. Reliability and accuracy

c. Compute curve following guide procedures as outlined in following
flow diagrams. Example problems showing most of the computational
techniques follow the flow diagram.
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E E ZEROOF"RLOOD
INCOMPLETE RECORD

COMPLETE RECORD
SEE APPENDIX 5, COMPUTE STATION
CONDITIONAL SR
PROBABILITY
ADJUSTMENT, FOR
OUTLIERS SEE J
PAGESI7 TOI9
AND APPENDIX 2-STATION ‘
5AND 6 COMPARISON |
¥
TEST AND ADJUST FOR
COMPUTE EXTENDED OUTLIERS/HISTORIC
RECORD APPENDIX 7 INFORMATION
SEE PAGE 12-3
| ]
TEST AND ADJUST DETERMINE
FOR HIGH OUTLIERS/
WEIGHTED G
HISTORIC INFORMATION | SEE PAGES 2TOI5
SEEK MORE
‘ : HISTORIC
% IF SYSTEMATIC RECORD LENGTH IS FLOOD DATA
LESS THAN 50 YEARS THE ANALYST

SHOULD CONSIDER WHETHER THE
USE OF THE PROCEDURES OF
APPENDIX 7 IS APPROPRIATE.

i

FLOOD ESTIMATE
FROM PRECIPITATION
SEE PAGES 21-22

NOTE: IS FURTHER ANALYSIS WARRANTED®

COMPARISONS
WITH SIMILAR
STEPS TO THIS POINT ARE BASIC WATERSHEDS
STEPS REQURED IN ANALYSIS OF s APPENDIX 8
READILY AVAILABLE STATION AND o ]
HISTORIC DATA. AT THIS POINT A 3
DECISION SHOULD BE MADE AS TO
WHETHER FUTURE FURTHER REFINE- FINAL CURVE
MENT OF THE FREQUENGY ESTIMATE
IS JUSTIFIED. THIS DECISION WILL +
DEPEND BOTH UPON TIME AND
EFFORT REQUIRED FOR REFINEMENT IF DESIRED
AND UPON THE PURPOSE OF THE
FREQUENGY ESTIMATE. V ¥
1 1
o] [3EE
CONFIDENGE PROBABILITY
LMITS ADJUSTMENT
APPENDIX 9 APPENDIX 1

FLOW DIAGRAM FOR FLOOD FLOW FREQUENCY ANALYSIS
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#=FLOW DIAGRAM FOR HISTORIC AND OUTLIER ADJUSTMENT

NO TEST
FOR LOW

OUTL IERS

—0.4<B<0.4

RECOMPUTE RECOMPUTE
STATISTICS STATISTICS
WITHOUT ADJUSTED FOR
] Low ] HISTORIC PEAKS.,
OUTL IERS HIGH OUTLIERS

APPENDIX &
— e}

TEST NO
FOR LOW
OUTLIERS

RECOMPUTE
STATISTICS
ADJUSTED FOR
HISTORIC PEAKS/
HIGH OQUTLIERS

APPENDIX 8

LOwW
OUTL IERS
OMITTED

RECOMPUTE RECOMPUTE
STATISTICS STATISTICS
WITHOUT WITHOUT
LOW LOW
OUTL IERS OUTLIERS
CONDITIONAL
PROBABILITY
ADJUSTMENT

APPENDIX &

Y

RETURN TO

PAGE 12-2
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The following examples illustrate application of most of the
techniques recommended in this guide. Annual flood peak data for
four statirns (Table 12-1) have been selected to illustrate the following:

1. Fitting the Log-Pearson Type III distribution
2. Adjusting for high outliers

3. Testing and adjusting for low outliers

4, Adjusting for zero flood years

The procedure for adjusting for historic flood data is given
in Appendix 6 and an example computation is provided. An example
has not been included specifically for the analysis of an incomplete
record as this technique is app1ﬁed in Example 4, adjusting for zero
flood years. The computation of confidence 1imits and the adjustment
for expected probability are described in Example 1. The generalized

aeékew coefficient used in these examples was taken from Plate I.

In actual practice, the generalized skew may be obtained from other
sources or a special study made for the region.

Because of round off errors in the computational procedures,
computed values may differ beyond the second decimal point.

*k

These examples have been completely revised using the procedures

the following pages:

recommended in Bulletin 17B. Specific changes have not been indicated on

K
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TABLE 12-1
ANNUAL FLOOD PEAKS FOR FOUR STATIONS IN EXAMPLES

Fishkill Creek Floyd River Back Creek Orestimba Creek
01-3735 06-6005 01-6140 11-2745

Year Example 1 Example 2 Example 3 Example 4
1929 J— —_ 8750

1930 15500 .:[:
1931 4060

1932 4260
1933 345
1934 516
1935 1460 . 1320
1936 4050 22000* 1200
1937 3570 - 2180
1938 2060 - 3230
1939 1300 6300 115
1940 1390 3130 34490
1941 1720 4160 3070
1942 6280 6700 1880
1943 1360 22400 6450
1944 — 7440 3880 1290
1945 2290 5320 8050 - 5970
1946 1470 1400 4020 782
1947 2220 3240 1600 0
1948 2970 2710 4460 0
1949 3020 4520 4230 335
1950 1210 4840 3010 175
1951 2490 8320 9150 2920
1952 3170 13900 5100 3660
1953 3220 71500 9820 147
1954 1760 6250 6200 0
1955 -8800 2260 10700 16
1956 8280 318 3880 5620
1957 1310 1330 3420 1440
1958 2500 970 3240 10200
1959 1960 1920 6800 5380
1960 2140 15100 3740 448
1961 4340 2870 4700 0
1962 3060 20600 4380 1740
1063 1780 3810 5190 8300
1964 1380 726 3960 156
1965 980 7500 5600 560
1966 1040 7170 4670 128
1967 1580 2000 7080 4200
1968 3630 829 4640 0
1969 17300 536 5080
1970 4740 6680 1010
1971 13400 8360 584
1972 2940 18700 0
1973 5660 5210 1510

*Not included in example computations.
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- EXAMPLE 1-
FITTING THE LOG-PEARSON TYPE III DISTRIBUTION

a. Station Description

Fishkill Creek at Beacon, New York

USGS Gaging Station: 01-3735

Lat: 41°30'42", long: 73°56'58"
Drainage Area: 190 sq. mi.

Annual Peaks Available: 1945-1968

b. Computational Procedures

Step 1 - List data, transform to logarithms, and compute the squares and

the cubes.
TABLE 12-2
COMPUTATION OF SUMMATIONS
Annual Peak Logarithm 2 3

Year (cfs) (X) X X

1945 2290 3.35984 11.28852 37.92764
1946 1470 3.16732 10.03192 31.77429
1947 2220 3.34635 11.19806 37.47262
1948 2970 3.47276 12.06006 41.88170
1949 3020 3.48001 12.11047 42.14456
1950 1210 3.08279 9.50359 29.29759
1951 2490 3.39620 11.53417 39.17236
1952 3170 3.50106 12.25742 42.91397
1953 3220 3.50786 12.30508 43.16450
1954 1760 3.2455]1 10.53334 34.18604
1955 8800 3.94448 15.55892 61.37186
1956 ‘ 8280 3.91803 15.35096 60.14552
1957 1310 3.11727 9.71737 30.29167
1958 2500 3.39794 11.54600 39.23260
1959 1960 3.29226 10.83898 35.68473
1960 2140 3.33041° 11.09163 36.93968
1961 4340 3.63749 13.23133 48.12884
1962 3060 3.48572 12.15024 42.35235
1963 1780 3.25042 10.56523 34.34144
1964 1380 3.13988 9.85885 30.95559
1965 980 2.99123 8.9474¢6 26.76390
1966 1040 3.01703 9.10247 27.46243
1967 1580 3.19866 10.23143 32.72685
1968 3630 3.55991 12.67296 45.11459
N=24 -- % 80.84043 273.68646 931.44732
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)

Step 2 - Computation of mean by Equation 2:

- XX
X= =5

_ 80.84043 _
= —or—— = 3.3684 | (12-1)

Computation of standard deviation by Equation 3b:

0.5

2 2
[EX% - X2
S ‘[ N-1

0.5

_[273.68646 - (80.84043)2/24
S = 23

3 ‘/ 1.38750 _
S = 23— = 0.2456

Computation of skew coefficient by Equation 4b:

(12-2)

s o ) - nEn @) + 2 503
N(N-1) (N-2)s°

_ (20)%(931.44732) - 3(24)(80.84043) (273.68646) + 2(80.84043)°
24(24-1) (24-2)  (.24561)3

_ 536513.6563 - 1592995.0400 + 1056612.7341 (12-3)

(24)(23)(22) (.014816)

131.3504 _
= T7559ge = 0.7300
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)
Step 3 - Check for Outliers:

XH=X+KNS
= 3.3684 + 2.467 (.2456) = 3.9743 (12-4)
QH = antilog (3.9743) = 9425 cfs

The largest recorded value does not exceed the threshold value. Next,
the test for detecting possible Tow outliers is applied. The same KN
value is used in equation 8a to compute the low outlier threshold (QL):

XL =X - KNS
= 3.3684 - 2.467(.2456) = 2.7625 (12-5)
Q, = antilog (2.7625) = 579 cfs

There are no recorded values below this threshold value. No outliers
were detected by either the high or low tests. For this example a
generalized skew of 0.6 is determined from Plate I. In actual practice
a generalized skew may be obtained from other sources or from a special
study made for the region. A weighted skew is computed by use of
Equation .5. The mean square error of the station skew can be found
within Table 1 or computed by Equétion 6. Computation of mean-square
error of station skew by Eq. 6:

wsEg = 10 [A - B [1og1o(8/10)]]

Where:
A= -0.33 + 0.08 1GI'= -0.33 + 0.08(.730) = -.2716 (12-6)
B=0.94 -0.26 16 = 0.94 - 0.26(.730) = .7502 (12-7)
NSEg ¢ 10 [--2716 - .7502 [10810(2.4)12 10 =+55683 « 0,277 (12-8)
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)

The mean-square error of the generalized skew from Plate I js 0.302.

Computation of weighted skew by equation 5:

6 = MSEF (G) + MsEg(G)

w —
MSEG + MSEG

- .302(.73293 + .277(.6) = 0.6678 (12-9)

0.7 (rounded to nearest tenth)

Step 4 - Compute the frequency curve coordinates.
The Tog-Pearson Type III K values for a skew coefficient of 0.7 are
found in Appendix 3. An example computation for an exceedance

probability of .01 using Equation 1 follows:
Tog Q= X + KS = 3.3684 + 2.82359(.2456) = 4.0619 (12-10)
Q = 11500 cfs

The discharge values in this computation and those in TaBie 12-3 are

rounded to three significant figures.
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)

TABLE 12-3
COMPUTATION OF FREQUENCY CURVE COORDINATES
Ks ,p
w .
P for GW = 0.7 log Q Q
cfs

.99 -1.80621 2.9247 841
.90 -1.18347 3.0777 1200
.50 -0.11578 3.3399 2190
.10 1.33294 3.6957 4960
.05 1.81864 3.8150 6530
.02 2.40670 3.9595 9110
.01 2.82359 4,0619 11500
.005 3.22281 4.1599 14500
.002 3.72957 4.,2844 19200

The frequency curve is plotted in Figure 12-1.

Step 5 - Compute the confidence limits.
The upper and lower confidence Timits for levels of significance of
.05 and .95 percent are computed by the procedures outlined in
Appendix 9. Nine exceedance probabilities (P) have been selected to
define the confidence 1imit curves. The computations for two points

on the curve at an exceedance probability of 0.99 are given below.
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)
Equations in Appendix 9 are used in computing an approximate value for
KP,c’ The normal deviate, Z.» is found by entering Appendix 3 with a
skew coefficient of zero. For a confidence level of 0.05, z. = 1.64485.
The Pearson Type III‘deviates,KGIWPP are found in Appendix 3 based on
the appropriate skew coefficient. For an exceedance probability of 0.99

and skew coefficient of 0.7, KG p = -1.80621.
w’

2
z 2
_ c _ (1.64485)° _
a ]_m = 1 - 51241 = 0.9412 (]2—]])
2 | zi 2 (1.64485)°
b = KGW,P - N = (~1.80621) 7 3.1497 (12-12)
2
g P*“\ﬁ%; p 2 “\/ 2 o
W o w W’ _-1.80621 +V(-1.80621)"-(.9412)(3.1497)
P,c ~ a .9412
: (12-13)
_-1.80621 + .5458 _
= = -1.3392
The dischargé value 1is: ,
log Q = 3.3684 + (-1.3392)(.2456) (12-14)
= 3.0395
Q = 1100
For the Tlower éonfidence coefficient:.
K. =—|kZ  -ab
» G . ,P ‘\ G ,P
Oy W _ -1.80621 - .5458 _ _ }
& o= _ - I 2.4989 (12-15)

£
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)

Thevdischarge value is:

Log Q = 3.3684 + (-2.4989)(.2456)
= 2.7546
Q = 568

(12-16)

The computations showing the derivation of the upper and lower confi-

dence limits are given in Table 12-4. The resulting curves are shown

in Figure 12-1.

TABLE 12-4
COMPUTATION OF CONFIDENCE LIMITS
KGw,P 0.05 UPPER LIMIT CURVE 0.05 LOWER LIMIT CURVE

=0.7¢ W q L Q
P for & =0.7, K5 e Tog Q ofs K,c TogQ cfs
.99 -1.80621 -1.3392 3.0395 1100 -2.4989 2.7546 568
.90 -1.18347 -0.7962 3.1728 1490 -1.7187 2.9462 884
.50 -0.11578 0.2244 3.4235 2650 -0.4704 3.2528 1790
.10 1.33294 1.9038 3.8359 6850 0.9286 3.5964 3950
.05 1.81864 2.5149 3.9860 9680 1.3497 3.6998 5010
.02 2.40670 3.2673 4.1708 14800 1.8469 3.8220 6640
.01 2.82359 3.8058 4.3031 20100 2.1943 3.9073 8080
.005 3.22281 4.3239 4.4303 26900 2.5245 3.9884 9740
.002 3.72957 4.9841 4.5925 39100 2.9412 4.0907 12300

Step 6 - Compute the expected probability adjustment.

The expected probability plotting positions are determined from

Table 11-1 based on N - 1 of 23.
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Example 1 - Fitting the Log-Pearson Type III Distribution (continued)

TABLE 12-5
EXPECTED PROBABILITY ADJUSTMENT

Expected
P Q Probability
.99 841 .9839
.90 1200 .889
.50 2190 .50
.10 -~ 4960 - 11
.05 6530 .060
.02 9110 .028*
.01 11500 .0161
.005 14500 .0095*
.002 19200 .0049*

*Interpolated values
The frequency curve adjusted for expected probability is shown

in Figure 12-1.
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EXAMPLE 2
ADJUSTING FOR A HIGH OUTLIER

a. Station Description

Floyd River at James, Towa

USES Gaging Station: 06-6005
Lat: 42034'30", Tong: 960 18 45"
Drainage Area: 882 sq. mi.

Annual Peaks Available: 1935-1973

b. Computational Procedures

Step 1

Step 2

- Compute the statistics.

The detailed computations for the systematic record 1935-1973
have been omitted; the results of the computations are:

Mean Logarithm § 3.5553
Standard Deviation of logs 0.4642
Skew Coefficient of Tlogs 0.3566
Years 39

At this point, the analyst may wish to see the preliminary
frequency curve based on the statistics of the systematic
record. Figure 12-2 is the preliminary frequency curve based
on the computed mean and standard deviation and a weighted
skew of 0.1 (based on a generalized skew of -0.3 from Plate I).

-  Check for Qutliers.

The station skew is between + 0.4; therefore, the tests for
both high outliers and low outliers are based on the systematic
record statistics before any adjustments are made. From
Appendix 4, the KN for a sample size of 39 is 2.671.

The high outlier threshold (QH) is computed by Equation 7:

xH=Y+ KNS
= 3.5553 + 2.671(.4642) = 4.7952 (12-17)
U = antilog (4.7952) = 62400 cfs
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Example 2 - Adjusting for a High Outlier (continued)

Step 3

Step 4

The 1953 value of 71500 exceeds this value. Information from local
residents indicates that the 1953 event 1is known to be the largest
event since 1892; therefore, this event will be treated as a high
outlier. If such information was not available, comparisons with
nearby stations may have been desirable.

The Tow-outlier threshold (QL) is computed by Equation 8a:

X, = T-KS
= 3.5553 - 2.671(.4642) = 2.3154 ~ (12-18)
QL = antilog (2.3154) = 207 cfs

There are no values below this threshold value.
Recompute the statistics.

The 1953 value is deleted and the statistics recomputed from the
remaining systematic record:

Mean Logarithm 3.5212
Standard Deviation of logs 0.4177
Skew Coefficient of logs -0.0949
Years 38

Use historic data to modify statistics and plotting positions.

Application of the procedures in Appendix 6 allows the computed
statistics to be adjusted by incorporation of the historic data.

(1) The historic period (H) is 1892-1973 or 82 years
and the number of Tow values excluded (L) is zero.

(2) The systematic period (N) is 1935-1973 (with 1953 deleted)
or 38 years.

(3) There is one event (Z) known to be the largest in 82 years.

(4) Compute weighting factor (W) by Equation 6-1:

H-1Z
+ L

= 821 - 53158 (12-19)

8+ 0
12-17

W =

oo =
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Example 2 - Adjusting for a High Outlier (continued)

Compute adjusted mean by Equation 6-2b:

v WNM + zX
M o= z
H-WL

X = M = 3.5212
WNM = 285.2173
ZXZ = 4.8543

290.0716
N
M = 290.0716/(82-0) = 3.5375 (12-20)

Compute adjusted standard deviation by Equation 6-3b:

ve2 o2 o2
v W(N=1)SE + WN(M-M)E +3 (X_- M)
s° = , z
H-WL-1
S = .4177
W(N-1)$% = 13.7604
V2
WN(M-M)¢ = .0215
V2
$(X_-M)¢ = 1.7340
z 15.5159
2 15.5159
S = 82-—0-]— = ,1916 ‘ (12-2])
pr .
S = .4377

Compute adjusted skew:

First compute adjusted skew on basis of record by Equation 6-4b:
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Example 2 - Adjusting for a High Qutlier (continued)

v Ho- WL [W(N—I)(N-Z)SBG + 3W(N~1)(M-;4,)52
(H-HL=1) (H-WL-2)$3 " n

+ UN(M-)° +3 (X, - 5)3]

w
]

-0.0949

W(N-T) (N-2)S6

N = nsm%gl
M2
3U(N-1) (M-M)S® = -.6729
330
M3
WN(M-M)® = -.0004
2% |
HY 3 T’,QG
$(X_-M)” _ 2.2833 ¢
z T.0032
72
H
w3 = +150907 (12-22)
(H-WL-1) (H-WL-2)S
NS
G = .1509 (1.0932) = .1650
14985

Next compute weighted skew:

For this example, a generalized skew of -0.3 is determined from
Plate I. Plate I has a stated mean-square error of 0.302.
Interpolating in Table I, the mean-square error of the station skew,

based on H of 82 years, is 0.073. The weighted skew is computed by
use of Equation 5:

- -302(.1650) + .073(-.3) _
G = TR o73 = 0.0745 (12-23)

[<p}
"

W 0.1 (rounded to nearest tenth)
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Example 2 - Adjusting for High Outlier (continued)
Step 5 - Compute adjusted plotting positions for historic data.

For the largest event (Equation 6-6):
iy = 1
For the succeeding events (Equation 6-7):
WE - (W-1)(Z + 0.5)
0 2.1316(2) - (2.1316-1)(1 + .5)
2.5658
For the Weibull Distribution a = 0; therefore, by Equation 6-8

S N
11

il

PP = —"— (100)
o+ 1
PP = —L (100) = 1.20
1 82 +1
PP, = 25658 100) = 3.09
83

(12-24)

(12-25)

(12-26)

Exceedance probabilities are computed by dividing values obtained from

Equation 12-26 by 100.
3.09 _

o0 ° .0309 )
TABLE 12-6
COMPUTATION OF PLOTTING POSITIONS
Weibull Plotting
Position

Event Weighted Percent Exceedance

Number  Order Chance. Probability
Year ’ Q W E o.m 55 35
1953 71500 1.0000 1 1.0000 1.20 .0120
1962 20600 2.1316 2 2.5658 3.09 .0309
1969 17300 2.1316 3 4.6974 5.66 .0566
1960 15100 2.1316 4 6.8290 8.23 .0823
1952 13900 2.1316 5 8.9606 10.80 .1080
1971 13400 2.1316 6 11.0922 13.36 .1336
1951 8320 2.1316 7 13.2238 15.93 .1593
1965 7500 2.1316 8 15.3554 18.50 .1850
1944 7440 2.1316 9 17.4870 21.07 .2107
1966 7170 2.1316 10 19.6186 23.64 .2364

Only the first 10 values are shown for this example
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Example 2 - Adjusting for a High Outlier (continued)

Step 6 - Compute the frequency curve.

TABLE 12-7
COMPUTATION OF FREQUENCY CURVE COORDINATES

K KGW ,P
P for G, = 0.1 Tog Q Q
cfs
.99 -2.25258 2.5515 356
.90  -1.27037  2.9815 958
.50 -0.01662 - 3.5302 3390
100 1.20178 4.1029 12700
.05  1.67279 4.2697 18600
.02 2.10697 4.4597 28800
.01  2.39961 4.5878 38700
.005  2.66965 4.7060 50800
.002  2.99978 4.8504 70900

The final frequency curve is plotted on Figure 12-3.
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EXAMPLE 3
TESTING AND ADJUSTING FOR A LOW OUTLIER

a. Station Description

Back Creek near Jones Springs, West Virginia

USGS Gaging Station: 01-6140

Lat: 39030'43", long: 78%02'15"

Drainage Area: 243 sg. mi.

Annual Peaks Available: 1929-31, 1939-1973

b. Computational Procedures

Step 1 -

 Step 2 -

Compute the statistics of the systematic record.
The detailed computations have been omitted; the results of the

computations are :

Mean Logarithm 3.7220
Standard Deviation of logs 0.2804
Skew Coefficient of logs -0.7311
Years 38

At this poinf the analyst may be interested in seeing the preliminary
frequency curve based on the statistics of the systematic record.
Figure 12-4 is the preliminary frequency curve based on the computed
mean and standard deviation and a weighted skew of -0.2 (based on a

generalized skew of 0.5 from Plate I).

Check for outliers.
As the computed skew coefficient is less than -0.4, the test for
detecting possible Tow outliers is made first. From Appendix 4,

the Ky for a sample size of 38 is 2.661.
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Example 3 - Testing and Adjusting for a Low Outlier (continued)

Step 3

Step 4

Step 5

The Tow outlier threshold is computed by Equation 8a:

XL = X - KNS

3.7220 - 2.661 (.2804)

2.9759 (12-27)

QL antilog (2.9759)

946 cfs

The 1969 event of 536 cfs is below the threshold value of 946 cfs

and will be treated as a low outlier.

Delete the low outlier(s) and recompute the statistics.

Mean Logarithm 3.7488
Standard Deviation of logs 0.2296
Skew Coefficient of logs 0.6311
Years 37

Check for high outliers.

The high-outlier threshold is computed to be 22,760 cfs based on the
statistics in Step 3 and the sample size of 37 events. No recorded
events exceed the threshold value. (See Examples 1 and 2 for the

computations to determine the high-outlier threshold.)
Compute and adjust conditional frequency curve.

A conditional frequency curve is computed based on the statistics

in Step 3 and then modified by the conditional probability adjustment
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Example 3 - Testing and Adjusting for a Low Outlier (continued)

(Appendix 5). The skew coefficient has been rounded to 0.6 for ease

in computation. The adjustment ratio computed from Equation 5-Ta is:

AV
P = N/n = 37/38 = 0.9737 (12-28)

TABLE 12-8
COMPUTATION OF CONDITIONAL FREQUENCY CURVE COORDINATES

Kg,p . Adjusted
d Exceedance
p foy‘ G = 0-6 ]og Q Q PY‘Ob&bﬂ'lt)/
d cfs (P.Py)
.99 -1.88029 -3.3171 2080 .9639
.90 -1.20028 3.4732 2970 876 0.5
.50 -0.09945 3.7260 5320 .487
.10 1.32850 4.0538 11300 .097
.05 1.79701 4.1614 14500 .049
.02 2.35931 4.2905 19500 0195 oy
01 2.75514 4.3814 24100 .0097
.005 3.13232 4.4680 29400 .0049
.002 3.60872 4.5774 37800 .0019

The conditional frequency curve, along with the adjusted frequency
curve, is plotted on Figure 12-5.
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Example 3 - Testing and Adjusting for a Low Outlier (continued)

Step 6 - Compute the synthetic statistics.
The statistics of the adjusted frequency curve are unknown.
The use of synthetic statistics provides a frequency curve
with a log-Pearson Type III shape. First determine the Q.o1,°.1o,

and Q 50 discharges from the adjusted curve on Figure 12-5.

Q oy = 23880 cfs
Q 1o = 11210 cfs
Q o = 5230 cfs

Next, compute the synthetic skew coefficient by Equation 5-3.

250 + 3.12 19900 01/Q.10)
Tog(@ 1/ 50/

[<p)
1}

1og(23880/11210) | (12-29)
-2.50 + 3.12 15o(1210/5230)

.32843
33110

-2.50 + 3.12

0.5948
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Example 3 - Testing and Adjusting for a Low Outlier (continued)

Compute the synthetic standard deviatijon by Equation 5-4.

w
1

s = 109(Q 13/0 50)/ (K 57K 5p)

Tog (23880/5230)/[2.75514-(-.09945)] (12-30)

w
i

.6595/2.8546 = 0.2310

Compute the synthetic mean by Equation 5-5.

X, = log (0.50) - K.SO(Ss)
= Tlog (5230) - (-.09945)(.2310) (12-31)
X, ='3.7185 + .0230 = 3.7415

Step 7 - Compute the weighted skew coefficient.

The mean-square error of the station skew, from Table 1, is 0.183
based on n = 38 and using G5 for G

_.302(0.5948) + .183(.5) _ ' }
6, - TS = 0.5590 (12-32)

G = 0.6 (rounded to nearest tenth)

12-29



Example 3 - Testing and Adjusting for a Low Outlier (continued)

Step 8 - Compute the final frequency curve.

TABLE 12-9
COMPUTATION OF FREQUENCY CURVE COORDINATES

g, P

P for GW =0.6 Tog Q Q

cfs
.99 -1.88029 3.3072 2030
.90 -1.20028 3.4642 - 2910
.50 -0.09945 3.7185 5230
.10 1.32850 4.0484 11200
.05 1.79701 4.1566 14300
.02 2.35931 4.2865 19300
.01 2.75514 4.3780 23900
.005 3.13232 4.4651 29200
.002 3.60872 4.5751 37600

The final frequency curve is plotted on Figure 12-6

Note: A value of 22,000 cfs was estimated for 1936 on the basis of data
from another site. This flow value could be treated as historic
data and analyzed by the producers described in Appendix 6. As

these computations are for illustrative purposes only, the remaining
analysis was not made. '
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EXAMPLE 4
ADJUSTING FOR ZERO FLOOD YEARS

a. Station Description

Orestimba Creek near Newman, California

USGS Gaging Station: 11-2745 ,
Lat: 37019'01", long: 121°07'39"

Drainage Area: 134 sq. mi.

Annual Peaks Available: 1932-1973

b. Computational Procedures
Step 1 - Eliminate zero flood years.

‘

There are 6 years with zero flood events, Teaving 36 non-zero events.

Step 2 - Compute thé statistics of the non-zero events .

Mean Logarithm 3.0786
Standard Deviation of logs 0.6443
Skew Coefficient of logs -0.8360
Years (Non-Zero Events) 36

Step 3 - Check the conditional frequency curve for dut]iers.

Because the computed skew coefficient is less than -0.4, the test for
detecting possible low outliers is made first. Based on 36 years, the
Tow-outlier threshold is 23.9 cfs. (See Example 3 for Tow-outlier
threshold computational procedure.) The 1955 event of 16 cfs is
below the ‘threshold value; therefore, the event will be treated as a
Tow-outlier and the statistics recomputed.

Mean Logarithm 3.1321
Standard Deviation of logs 0.5665
Skew Coefficient of logs -0.4396
Years (Zero and Tow

outliers deleted) 35
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Example 4 - Adjusting for Zero Flood Years (continued)
Step 4 - Check for high outliers

The high outlier threshold is computed to be 41,770 cfs based on the
statistics in Step 3 and the sample size of 35 events. No recorded
events exceed the threshold value. (See examples 1 and 2 for the
computations to determine the high-outlier threshold.)

Step 5 - Compute and adjust the conditional frequency curve. :

A conditional frequency curve is computed based on the statistics

in step 3 and then adjusted by the conditional probability adjustment
(Appendix 5). The skew coefficient has been rounded to -0.4 for ease
in computation. The adjustment ratio is 35/42 = 0.83333.

TABLE 12-10
COMPUTATION OF CONDITIONAL FREQUENCY CURVE COORDINATES

K . Adjusted
G,P Exceedance
Pd for G = 0.4 log Q ' Q Probability
cfs (P.Pd)
.99 ~2.61539 1.6505 44.7 .825
.90 -1.31671@_ ,OK'Z.’ZgZ 57 2.38622'0)745 1243 172 :53‘%— 0.5
.50 0.06651 3.1698: 48 ' A1
> : 5.7 X3y ==_ |
.10 1.23114 ‘ 3.8295 6750 .083 '
.05 1.52357 - 3.9952 989Q9/' 042
.02 ‘1.8336‘14%_\ qu (Q gé 4.17084 L8 14800[ 6259 .017 <& 0,04
.01 2.02933 _ ' 4.2817 19100 .0083
.005 2.20092 4.3789 23900 .0042
.002 2.39942 4.4914 31000 0017

Both frequency curves are plotted on Figure 12-7.
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Example 4 - Adjusting for Zero Flood Years (continued)

Step 6 - Compute the synthetic statistics.

First determine the Q 0],Q 10° and Q 50 discharges from the adjusted
curve on Figure 12-7.° : )

- ‘ \[
17940 cfs L— ZlialaT VarICTIOnS here

Qo1
1 ] I 9 ‘
Q]O = 6000 cfs k@ﬁci To \Dkﬁ c\y(\éféygmce“ﬁ
- r R ‘ ]
- LA
Q.50 = 1060 cfs 4
Compute the synthetic skew coefficient by Equation 5-3.
~0.528L 8677
_ 10g(17940/6000) _
GS 2.50 + 3.12 Tog(6000/T060) - -0.5287 (12-33)
Gs = ~0.5 (rounded to nearest tenth)

Compute the synthetic standard deviation by Equation 5-4.

MISTANE
Ss = Tog(17940/1060)/(1.95472 - .08302) (12-34)
K(00~ K2K
] -0 718%
SS = 0.6564 OJ@::,OZ—\ _
Compute the synthetic mean by Equation Q{E;//}///
_ Ke 27y
XS = Tog(1060) - (.08302)(.6564) (12-35)
Xs = 2.9708 77J78

Step 7 - Compute the weighted skew coefficient by Equation 5.

A generalized skew of -0.3 is determined from Plate I. From Table I,
the mean-square error of the station skew is 0.163.

_ .302(-.529) + .163(-.3) _ -
GW = 302 ¥ 163 = -0.4487 (12 36)
GW = -0.4 (rounded to nearest'tenth)
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Example 4 - Adjusting for Zero Flood Years (continued)
Step 8 - Compute the final frequency curve.

TABLE 12-11
COMPUTATION OF FREQUENCY CURVE ORDINATES

o

P for G = -0.4 log Q 0
W

cfs
.99 -2.61539 1.2541 17.9
.90 -1.31671 £.1065 128
.50 0.06651 3.0145 1030
.10 1.23114 3.7789 6010
.05 1.52357 3.9709 9350
.02 1.83361 4.1744 14900
.0 2.02933 4.3029 20100
, 005 2.20092 4.4155 26000
.002 2.39942 4.5458 35100

This frequency curve is plotted on Figure 12-8. The adjusted frequency
derived in Step 4 i5‘a1sn shown on Figure 12-8. As the generalized skew
may have been determined from stations with much different characteristics

from the zero flood record station, judgment is required to determine the
most reasonable frequency curve,
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Appendix 13

COMPUTER PROGRAM

+
Programs have been developed that compute a Tog-Pearson Type III

distribution from systematically recorded annual maximum streamflows at

a single station -- and other large known events. Special routines are
included for managing zero flows and very small flows (outliers) that would
distort the curve in the range of higher flows. An option is included to
adjust the computed curve to represent expected probability. Copies of
agency programs that incorporate procedures recommended by this Guide may
be obtained from either of the following:

Chief Hydrologist Hydrologic Engineering Center
U.S. Geological Survey, WRD U.S. Army Corps of Engineers
National Center, Mail Stop 437 609 2nd Street, Suite I
Reston, VA 22092 Davis, CA 95616

Phone: (703) 860-6879 Phone: (916) 756-1104

There is no specific recommendation to utilize these particular computer
programs. Other federal and state agencies as well as private organizations
may have developed individual programs to suit their specific needs. +
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Appendix 14
"FLOQD FLOW FREQUENCY TECHNIQUES"
REPORT SUMMARY K

Following is a summary of "Flood Flow Frequency Techniques," a
report by Leo R. Beard, Technical Director, Center for Research in Water
Resources, The University of Texas at Austin, for the O0ffice of Water
Resources Research and the Water Resources Council. Much of the text
and a majority of the exhibits are taken directly from the report.

The study was made at the Center for Research in Water Resources of
The University of Texas at Austin at the request of and under the general
guidance of the Work Group on Flood Flow Frequency, Hydrology Committee,
of the Water Resources Council through the auspices of the 0Office of
Water Resources Research. The purpose was to provide a basis for develop-
ment by the Work Group of a guide for flood frequency analysis at locations
where gage records are available which would incorporate the best technical
methods currently known and would yield greater reliability and consistency
than has heretofore been available in flood flow frequency determinations.

The study included° (a) a review of the Titerature and current
practice to select cand1date methods and.procedures for test1ng, (b)
selection of long- record station data of natural streamflows in the
United States and development of data management and analysis computer
programs for testing'alternate procedures, (c) testing eight basic
statistical methods for frequency analysis including alternate distribu-
tions and fitting techniques, (d) testing of alternate criteria for
managing outliers, (e) testing of procedures for treating ;tat1ons with
zero flow years, (f) testing relat1onsh1ps between annual maximum and
partial-duration series, (g) testing of expected probab111ty adjustment,
(h) test1ng to determine if flood data exhibit consistent long-term
trends, and (i) recommendations with regard to each procedure tested and
development of background mater1a1 for the gu1des being developed by the
‘Work Group.
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Data

In all, 300 stations were used in the testing. Flows were essentially
unregulated. Record length exceeded 30 years with most stations having
records longer than 40 years. The stations were selected to give the
best feasible coverage of drainage area size and geographic location and
to include a substantial number of stations with no flow for an entire
year. Table 14-1 1ists the number of stations by size and geographic
zone.

Split Record Testing

A primary concern of the study was selection of a mathematical
function and fitting technique that best estimates flood flow frequencies
from annual peak flow data. Goodness of fit of a function to the data
used in the fitting process is not necessarily a valid criterion for
selecting a method that best estimateés flood frequencies; Consequently,
split record testing was used to simulate conditions of actual application
by resefving a‘portion of a record from the fitting computation and
using it as "future" events that would occur in practice. Goodness of
fit can nevertheless be used, part1cu1ar1y to e11m1nate methods whose
fit is very poor.

' Each record of annual maximum flows was divided into two halves,
using odd sequence numbers for one half and even for the other in order
to eliminate the effect of'any general trend that m{ght possibly exist.
This splitting procedure should adequate1y s1mu1ate practica1 situations
as annual events were tested and found independent of each other.
Frequency estimates were made from each half of a record and tested

against what actually happened in the other ha1f
| Development 6f verification criteria is complicated, because what
“actually happens in the reserved record half also 1is subject to sampling
irregularities. ConSequently.'reServed data cannot be used as a simple,
accurate target and vérification criteria must be probab11istic.a The
‘test procedure, however, simulates conditions faced by the planner,
designer, or operator of water resource pfojects, who knows neither that
past events are representative nor what future events will be.
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The ultimate objective of any statistical estimation process is not
to estimate the most 1ikely theoretical distribution that generated the
observed data, but rather to best forecast future events for which a
decision is formulated. Use of theoretical distribution functions and
their attendant reliability criteria is ordinarily an intermediate step
to forecasting future events. Accordingly, the split record technique
of testing used in this study should be more rigorous and direct than
alternative theoretical goodness-of-fit tests.

Frequency Computation Methods

Basic methods and fitting techniques tested in this study were
‘selected by the author and the WRC Work Group on Flood Flow Frequency
after careful review of the literature and experience in the various
agencies represented; those that were tested are 1isted below. Numbering
corresponds to the identification number of the methods in the computer
programs and in the attached tables.

1. Log-Pearson Type III (LP3). The technique used for this is
that described in (35). The mean, standard deviation, and skew coefficients
for each data set are computed in accordance with the following equations:

¥ = LX | -
X = = | (14-1)
s2 = 1 X% - (ZX)?/N (14-2)
A N-1 -
g = N%mx3 - anzxzxl + 2(xx)3
N(N-T) (N-2)S3 (14-3)
where
X = Togarithm of peak flow
N = number. of items in the data set
X = mean ‘logarithm
- S ='standard deviation of logarithms
g = skew coefficient of logarithms
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Flow logarithms are related to these statistics by use of the
following equation: |
X =X+KkS (14-4)
Exceedance probabilities for specified values of k and values of k
for specified exceedance probabilities are calculated by use of the
normal distribution routines available in computer libraries and the
approximate transform to Pearson deviates given in reference (31).

2. Log Normal (LN). This method uses a 2-parameter function
jdentical to the log-Pearson III function except that the skew coefficient
is' not computed (a value of zero applies), and values of k are related
to ekceedance probabilities by use of the normal distribution transform
available in computer libraries.

3. Gumbel (G). This is the Fisher-Tippett extreme-value function,
which relates magnitude 1inearly with the log of the log of the recip-
rocal of exceedance probability (natural logarithms). Maximum 1ikelihood
estimates of the mode and siope (location and scale parameters) are
made by iteration using procedures described by Harter and Moore in
reference (36). The initial estimates of the location and scale statistics
are obtained as follows:

M =YX - 0.45005 S (14-5)
B=.7797 S ' (14-6)
Magnitudes are related to these statistics as follows:

X =M+ B(-In(-1nP)) (14-7)
where

M = mode (location statistic)

B = slope (scale statistic)

X = magnitude

P = exceedance probability

S =

standard deviation of flows
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Some of the computer routines used in this method were furnished by
the Central Technical Unit of the Soil Conservation Service.

4. Log Gumbel (LG). This technique is identical to the Gumbel
technique except that logarithms (base 10) of the flows are used.

5. Two-parameter Gamma (G2). This is identical to the_3-parémeter
Gamma method described below, except that the location parameter is set
“to zero., The shape parameter is determined directly by solution of
‘N8rlund's (37) expansion of the maximum 1ikelihood equation which gives
the following as an approximate estimate of a:

a = 1+/1+% (In- & 2in) . (14-8)
4 (In T - §.21n0) e
where o
Q = average annual peak flow
N = number of items in the data set
Q = peak flow
Ao, = correction factof

B is estimated as follows:

g = L T - (14-9)

6. -Three-parameter Gamma (G3)., Computation of maximum 1ikelihood
statistics for the 3-parameter Gamma distribution is accomplished using
procedures described in reference (38). If the minimum flow is zero, or
if the calculated lower bound is less than zero, the statistics are identical
to those for}the 2-parameter Gamma distribution. Otherwise, the lower
bound, v, is initialized at a value slightly smaller than the lowest value
of record, and the maximum 1ikelihood value of the lower bound is derived
by iteration using criteria in reference (38). Then the parateters o and B8
are solved for directly using the equations above replacing Q with Q-vy.
Probabilities corresponding to specified magnitudes are computed directly

by use of a library gamma routine. Magnitudes corresponding to specified
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probabilities are computed by iteration using the inverse solution.

7. Regional Log-Pearson Type III (LPR). This method is identical
to the log-Pearson Type III method, except that the skew coefficient is
taken from Figure 14-1 instead of using the computed skew coefficient.
Regionalized skew coefficients were furnished by the U.S. Geological
Survey.

8. Best Linear Invariant Gumbel (BLI). This method is the same as
'for the Gumbel method, except that best 1inear invariant estimates
(BLIE) are used for the function statistics instead of the maximum
1ikelihood estimates (MLE). An automatic censoring routine is used
for this method only, so there are no altenative outlier techniques
tested for this method. Statistics are computed as foilows:

M= 32(X(I)-U(N,J,I)) ‘ (14-10)
B = £(X(I)-V(N,J,I)) (14-11)
where
U = coefficient UMANN described in reference (39)
V = coefficient BMANN described in ¢eference (39)
J = number of outliers deleted plus 1
I = order number of flows arranged in ascending-magnitude
order
N = sample size as censored.

Since weighting coefficients U and V were made available in this study
only for sample sizes ranging from 10 to 25, 5-year samples are not
treated by this method, and records (or half records) of more than 25
years are divided into chronological groups and weighted average coeffi-
cients used in lieu of coefficients that might otherwise be obtained if
more complete sets of weighting coefficients were available. Up to two
outliers are censored at the upper end of the flow array. Each one is
removed if sequential tests show that a value that extreme would occur
by chance less than 1 time 10 on the basis of the BLIE statistics.
Details of this censoring technique are contained in refer-
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ence (40). Weighting coefficients and most of the routines used in this
method were furnished by the Central Technical Unit of the Soil Conserva-
tion Service.

Qutliers ,

Outliers were defined for purpose of this study as extreme values
whose ratio to the next most extreme value in the same (positive or
nega£1ve) direction is more extreme than the ratio of the next most
extreme value to the eighth most extreme value.

The techniques tested for handling outliers consisted of

a. keeping the value as is,

b. reducing the value to the product of the second largest event
and the ratio of the second largest to eighth largest event,

c. reducing the value to the product of the second Tlargest event
and the square root of that ratio, and

d. discarding the value.

In the cases of outliers at the low end, the words largest in (b) and
(c) should be changed to smallest.

Zero Flow .

Two techniques were tested for handling stations with some complete
years of no flow as follows:

(a) Adding 1 percent of the mean magnitude to all values for
computation purposes and subtracting that amount from subsequent
estimates, and -

(b) removing all zeros and multiplying estimated exceedance frequen-
cles of the remaining by the ratio of the number of non-zero values to
the total number of values. This is the procedure of combining probabil-
ities described in reference (27). '
Partial-Duration Series

A secondary concern of the study was the relationship between
annual maximum 1low frequencies and partial-duration flow frequencies.

Because a partial-duration series consists of all events above a
specified magnitude, 1t 1s necessary to define separate events. The
definition normally depends on the application of the frequency study as
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well as the hydrologic characteristics of the stream. For this study
separate events were arbitrarily defined as events separated by at least
as many days as five plus the natural logarithm of the square miles of
drainage area, with the requirement that intermediate flows must drop
below 75 percent of the Tower of the two separate maximum daily flows.
This is considered representative of separation criteria appropriate for
many applications.

Maximum daily flows were used for this part of the study, because
there were insufficient readily available data on instantaneous peak
flows for events smaller than the annual maximum. There is no reason to
believe that the frequency relationship would be different for peak
flows than for daily flows.

The relationship between the maximum annual and partial durat1on
series was expressed as a ratio of partial-duration to annual event
frequencies at selected annual event frequencies. In order to develop
partial-duration relationships independent of any assumptions as to
frequency functions, magnitudes corresponding to annual-maximum event
exceedance probabilities of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 are
established for complete records at each station by linear interpolation
between expected probability plotting positions (M/(n+1)) for the annual
maximum events. Corresponding frequencies of partial-duration flows are
established simply by counting the total number of independent maximum
daily flows at each station above each magnitude and dividing by the
total number of years at that station. Ratios of partial-duration to
annual event frequencies were averaged for all. stations in each USGS
zone and compared with ratios derived for certain theoretical conditions
by Langbein (9).

Expected Probability Estimation

The expected probability is defined as the average of the true
probabilities of all magnitude estimates for any specified flood frequency
~ that might be made from successive samples of a specified size. For any
specified flow magnitude, it is considered to be the most appropriate
estimate of probability or frequency of future flows for water resources
planning and management use.

It is also a probability estimate that is theoretically easy to
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verify, because the observed frequencies in reserved data at a large
number of stations should approach the computed probability or frequency
estimates as the number of stations increases. Accordingly, it was
considered that expected probability estimates should be used in the
split record tests.

A method of computing expected probabilities has been developed for
samples drawn from a Gaussian normal distribution as described in (21).

Similar techniques are not available for the other threoretical
distribution functions. Consequently, an empirical transform is derived
for each distribution. To do this a calibration constant was determined
which, when multiplied by the theoretical normal transform adjustment,
removed the observed average bias in estimating probabilities for the
300 stations used in this study. This empirical transform was used in
making the accuracy tests that are the main basis for judging the relative
adequacy of the various methods tests.

Trends and Cycles o

There is some question as to whether long-term trends and cycles
(Tonger than 1 year) exist in nature such that knowledge of their
nature can be used to improve forecasts of flood flow frequencies for
. specific times in the future.  As a part of this research project, lag
1 autocorrelation coefficients of annual peak flows for all stations
were computed. If trends or cycles exist in any substantial part of the
data, there should be a net positive average autocorrelation for all
stations. A statistically significant positive average autocorrelation
was not found.

Accuracy and Consistency Tests

Criteria used in judging the adequacy of each method for fitting a
theoretical distribution were as follows:

~Accuracy tests consisted of the following compar1sons between
computed frequencies in one-half the record with frequencies of events
that occurred in the reserved data.

a. Standard deviation of observed frequencies (by count) in
reserved data for magnitude estimates corresponding to exceedancen
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probabilities of 0.001, 0.01, 0.1, and 0.5 computed from the part of the
record used. This is the standard error of a frequency estimate at
individual stations that would occur if a correction is made for the
average observed bias in each group of stations for each selected frequency
and method. :

b. Root-mean-square difference between expected prdbabi]ity
‘plotting position (M/(n+1)) of the largest, upper decile and median
event in a half record and the computed expected probability exceedance
frequency of that respective event in the other half. This is the
standard error of a frequency estimate at individual stations without
any bias adjustment for each method and for the frequency of each selected
event.

c. Root-mean-square difference between 1.0 and the ratio of the
computed probability of flow in the opposite half of a record to the
plotting position of the largest, upper decile and median event (in
turn) in a half record. This criterion is similar to that of the preceding
paragraph except that methods that are biased toward predicting small
frequencies are not favored.

Consistency tests involved the following comparisons between
computed frequencies in each half of the record with the total record.

a. Root-mean-square difference between computed probabilities from
the two record halves for full record extreme, largest, upper decile and
median events, in turn. This is an indicator of the relative uniformity
of estimates that would be made with various random samples for the same
location.

b. Root-mean-square value of 1.0 minus the ratio of the smaller to
the larger computed probabilities from the two record halves for full
record extreme, largest, upper decile and median events, in turn. This
is essentially the same as the preceding criterion, except that methods
that are biased toward predicting small frequencies are not favored.

The extreme event used in the consistency tests is an arbitrary
value equal to the largest multipiied by the square root of the ratio of
the largest to the median event for the full record.

It should be recognized that sampling errors in the reserved data
are as large or larger for the same sample size as are sampling errors
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of computed values. Similarly, sampling errors are comparable for
estimates based on opposite record halves used for consistency tests.
Consequently, a great number of tests 1s necessary in order to reduce the
uncertainty due to sampling errors in the reserved data. Further, a
method that is biased toward estimating frequencies too low may have a
small standard error of estimating frequencies in comparison with a
method that is biased toward high frequencies, if the bias is nuf removed.
The latter may have smaller percenlage errors. Accordingly, consider-
ation of the average frequency estimate for each of the e1ght methods
must be a component of the analyses. '

As a further means of evaluating alternate procedures the complete
record results, computed curve without any expected probability adjustment,
and the plotted data point were printed out.

Evaluation of Distributions

Table 14-2 shows for each method and each USGS zone the number of
stations where an observed discharge exeeeded the computed 1,000-year
discharge. With 14,200 station-years of record, it might be expected
that about 14 observed events would exceed true 1,000-year magnitudes.
This comparison indicates that the log-Pearson Type III (method 1), log
normal (method 2), and log-Pearson Type III with generalized skew (method
7), are the most accurate,

Table 14-3 shows average observed freguencies (by count) in the
reserved portions of half records for computed probabilities of 0.001,
0.01, 0.1, and 0.5 and the standard deviations (accuracy test a) of the
observed frequencies from their averages for each computed frequency.

It is difficult to draw conclusions from these data. Figure 14-2 shows
a plotting of the results for the 0.01 probability estimates which aids
in comparison. This comparison indicates that the log normal and log-
Pearson Type I11 methods with generalized skew have observed frequencies
¢losest to those computed and the smallest standard deviations except
for method 4.

Table 14-4 shows the average results for all stations of accuracy
tests b and c. Results are not definitive, but again the log normal
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(method 2) and log-Pearson Type III with generalized skew (method 7)
“show results as favorable as any other method as illustrated for test b
in Figure 14-3.

Table 14-5 shows the results of the consistency tests. Figure 14-4
displays the results graphically for test a. The consistency test results
are not substantially different from or more definitive than the accu-
racy results. From Figure 14-4 it appears. that the log-Pearson Type III
method with generalized skew yields considerably more consistent results
than the log normal.

Results of Qutlier Testing

Table 14-6 shows results for all stations of the accuracy and
consistency tests for the four different outlier techniques. Results of
these tests show that for the favorable methods [log normal (method 2)
and log-Pearson Type I1II with generalized skew (method 7)1, outlier
techniques a and b are most favorable. Unfortunately, no discrimination
" was made in the verification tests between treatment of outliers at the
upper and lower ends of the frequency arrays. Outliers at the Tower end
can greatly increase computed frequencies at the upper end. Average
computed frequencies for all half records having outliers at the upper
or lower end are generally high for the first three outlier techniques
and low for the fourth.

It is considered that this is caused primarily by outliers at the
Tower end. Values observed are as follows:

Average p]dttﬁng position of maximum flow 0.042
- Average computed probability, method a 0.059
Average computed probability, method b~ } 0.050
Average computed prcbability, method c - 70.045
Average computed probability, method d - 0.038

" Until more discriminatory outlier studies are made, method a
appears to be the most logical and justifiable to use.

Results of Zero Flow Testings
Table 14-7 shows the average for all stations of the results of
accuracy and consistency tests for the two different zero flow techniques.
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These test comparisons indicate that for the favorable methods [log
normal (method 2) and log-Pearson Type III with generalized skew (method
7)1, technique b is slightly better than a.

Results of Partial-Duration Studies

Results of partial-duration studies are shown in Table 14-8. It
can be seen that there is some variation in values obtained for different
zones and that the average of all zones is somewhat greater than the
theoretical values developed by Langbein. The theoretical values were
based on the assumption that a large number of independent (random)
events occur each year. If the number of events per year is small, the
average values in Table 14-8 would be expected to be smaller than the
theoretical values. If the events are not independent such that large
events tend to cluster in some years and small events tend to cluster in
other years, the average values in Table 14-8 would be expected to be
larger than the theoretical values.

It was concluded that values computed for any given region (not
necessarily zones as used in this study) should be used for stations in
that region'after smoothing the values such that they have a constant
relation to the Langbein theoretical function.

Expected Probability Adjustment Results _

The ratios by which the normal expected probability theoretical
adjustment must be multiplied in order to compute average probabilities
equal to those observed for each zone are shown in Tables 14-9, 14-10,
and 14-11. It will be noted that these vary considerably from zone to
zone and for different exceedance intervals. Much of this variation,
however, is believed due to vagaries of sampling. Average ratios for
the 100-year flood shown on the last line in Table 14-10 were adopted
for each distribution for the purpose of comparing accuracy and the
various methods. These are as follows:

1. Log-Pearson Type III - 2.1

2. Log Normal , .. 0.9
3. Gumbel, MLE 3.4
4. Log Gumbel -1.2
5. 2-parameter gamma ‘ 3.4
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6. 3-parameter gamma 2.3

7. Regional log-Pearson Type III 1.1

8. Gumbel, BLIE 5.7

Results of this portion of the study jndicate that only the log
normal (method 2) and log-Pearson Type III with regional skew (method 7)
are free of substantial bias because zero bias should correspond approxi-
mately to a coefficient of 1.0 as would be the case if the distribution
characteristics do not greatly influence the adjustment factor. The
following tabulation for log-Pearson Type III method with regional skew
indicates that the theoretical expected probability adjustment for the
normal distribution applies approximately for this method. Coefficients
shown range around the theoretical value of 1.0 and, with only one
exception, do not greatly depart from it in terms of standard-error
multiples. It is particularly significant that the most reliable data
(the 100-year values) indicate an adjustment factor near 1.0.

Expected Probability Adjustment Ratios for A1l Zones

Sample 10-Yr - 100-Yr 1000-Yr
Size Avg. Std. Err. Avg. Std. Err. Avg. Std. Err.
5 0.81 0.17 0.94 0.12 1.01 0.13
10 0.60 0.22 1.12 0.20 1.45 0.27
23 0.17 0.27 1.14 0.23 1.68 0.28

Results of Test for Trends and Cycles

Results of lag I autocorrelation studies to test for trends are
shown in Table 14-12. It is apparent that there is a tendency toward
positive autocorrelation, indicating a tendency for flood years to
cluster more than would occur in a completely random process. The
t values shown are multiples of the standard error of the lag I correla-
tion coefficient, and it is obvious that extreme correlation coefficients
observed are not seriously different from variations that would occur by
chance. It is considered that annual peak flows approximate a random
process in streams used in this study.
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Conclusions

Although split record results were not as definitive as anticipated,
there are sufficient clearcut results to support definite recommendations.
Conclusions that can be drawn are as follows:

a. Only method 2 (log normal) and method 7 (log-Pearson Type III
with regional skew) are not greatly biased in estimating future frequencies.

b. Method 7 gives somewhat more consistent results than method 2.

c. For methods 2 and 7, outlier technique "a" (retaining the
outlier as récorded) is more accurate in terms of ratio of computed to
observed frequencies than methods that give less weight to outliers.

d. For methods 2 and 7, zero flow technique "b" (discarding zero
flows and adjusting computed frequencies) is slightly superior to zero
flow technique "a."

e. Streamflows as represented by the 300 stations selected for
this study are not substantially autocorrelated; thus, records need not
be continuous for use in frequency analysis.

f. Partial-duration frequencies are related to annual event
frequencies differently in different regions; thus, empirical regional
relationships should be used rather than a single theoretical relationship.

Of particular significance is the conclusion that frequencies
computed from theoretical functions in the classical manner must be
adjusted to reflect more frequent extreme events if frequencies computed
in a great number of cases are to'average the same:as observed frequencies.
For the recommended method, adjustment equal to the theoretical adjustment
- for estimates made from samples drawn from a normal population is approxi-
mately correct. . '

Of interest from a research standpoint is the finding that split
record techniques require more than 300 records of about 50 events each
to be definitive. This study showed that random variations in the
reserved data obscure the results to greater degree than would be the
case if curve-fitting functions could reduce uncertainty to a greater
degree than has been possible.

In essence, then, regardless of the methodology employed, substan-
tial uncertainty in frequency estimates from station data will exist,
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but the log-Pearson type III method with regional skew coefficients will
produce unbiased estimates when the adjustment to expected probability
is employed, and will reduce uncertainty as much as or more than other
methods tested.

Recommendations for Future Study

It is considered that this study is an initial phase of a more
comprehensive study that should include

a. Differentiation in the treatment of outliers at the upper and
lower ends of a frequency curve; .

b. Treatment of sequences composed of different types of events
such as flood flows resulting from rainfall and those from snowmelt, or
hurricane and nonhurricane floods;

c. Physical explanation for great differences in frequency character-
istics among streams in a given region;

d. Development of systematic procedures for regional coordination
of flood flow frequency estimates and applications to locations with
recorded data as well as to locations without recorded data;

e. Development of procedures for deriving frequency curves for
modified basin conditions, such as by urbanization;

-f. Development of a step-by-step procedure for deriving frequency
curves for locations with various amounts and types of data such that
progressively reliable results can be obtained on a consistent basis as
the amount of effort expended is increased; and

g. Preparation of a text on flood flow frequency determinations
for use in training and practical application.
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FIGURE 14-1

GENERALIZED SKEW COEFFICIENTS OF ANNUAL MAXIMUM

STREAMFLOW LOGARITHMS

PREPARED BY U.jS.
GEOLOGICAL SU,LVEY

ZONE NUMBERS ADDED
115%° 110° 105*
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14-4

FROM TABLE
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FIGURE 14-3
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14-5
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USGS
ZONE
1

00 ~N O O B oW N

9
10
11
12
13
14
15
16

*

Total

Numbers of Verification Stations by Zones and Area Size

Table 14-1

Drainage area category (sq. mi.) Total
0-25 25-200 200-1000 1000+

4 8 10 5 27
2 5 12 5 24
5 3 16 1 25
1 6 8 0 15
3 2 14 1 20
4 3 13 4 24
5 2 12 2 21
8 2 11 2 23
1 7 8 2 18
0 8 4 0 12
2 5 6 0 13
0 5 9 3 17
0 2 10 5 17
0 6 8 1 15
2 1 0 0 3
12 1 0 0 13
4 7 1 1 13
53 73 142 32 300

*Zero-flow stations (zones 8, 10 & 11 only)
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Table 14-2
NUMBER OF STATIONS WHERE ONE OR MORE OBSERVED FLOOD EVENTS
EXCEEDS THE 1000-YR FLOW COMPUTED FROM COMPLETE RECORD

STATION-
YEARS OF METHOD

ZONE RECORD 1 2 3 4 5 6 1 8
1 1414 o 1 8 0 10 7 2 26
2 1074 o 3 9 0 10 7 1 19
3 1223 1 3 7 0 9 8 4 22
4 703 1 2 3 0 3 3 2 12
5 990 2 1 7 0 4 4 0 19
6 1124 o 2 4 0 4 4 1 18
7 852 1T 2 5 1 3 4 3 17
8 969 1 1 10 o0 3 3 1 19
9 920 3 0 4 0 3 3 1 16
10 636 1 0o 2 o 1 1 0 10
n 594 1 1 6 0 4 4 0 N
12 777 o 2 2 0o 2 2 2 9
13 911 1 0 1 0 4 2 2 14
14 761 o o 3 0 4 1 1 15
15 120 o o o0 o0 o0 0 0 2
16 637 1 0 4 0 4 3 0 12
* 495 1 0 2 0 0 0 0 12
TOTAL 14,200 4 18 77 1 68 56 20 253

Based on the 14,200 station-years of record, it might be expected that
about 14 observed events would exceed the true 1000-year magnitudes.

*Zero-flow stations
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EZ-71

Table 14-3
STANDARD DEVIATION COMPARISCONS
AVERAGE FOR ZONES 1 TO 16

COMPUTED METHOD
PROBABILITY 1 2 3 4 5 6 7 B
AVERAGE OBSERVED PROBABILITIES

001 . 0105 0041 0109 Qo001 0110 .0092 0045 L0009
.01 0232 0153 .0315 0023 .0309 0244 0170 . 0015

.1 .1088 .1007 .1219 .0707 1152 L1047 1020 .0029
=5 .530%90 .5149 -4576 -6152 4713 +4950 +5108 .0037
STANDARD DEVIATION OF OBSERVED PROBABILITIES FOR SPECIFIED COMPUTED PROBABILITIES

-001 .0290 .0134 L0244 .0025 .0239 .0218 .0150 .0222
.01 0430 .029 045 .010 .043 .039 .032 .035

ol . 086 R L0BI 074 089 084 084 067

' 3 -132 131 +142 .133 .133 .141 .130 123

Note: Averages and standard deviations are of observed frequencies in the reserved portion of each
record corresponding to computed mangitudes based on half records. Low standard deviations in re-
lation to averages indicate more reliable estimates.



Table 14-4
- Evaluation of Alternative Methods
Accuracy Tests b and c, Average Values, A1l Stations

Test b--Root mean square difference between plotting position and
computed probability in other half of record.

Method
12 3 4 5 8 1 8
Maximum .062 .060 .067 .056 .070 .069 .061 .061
Decile .084 ,080 .097 .063 .098 .094 .081 .082
Median .254 105 .657 .193 .518 .295 .120 .727

Test c--Root mean square difference bewteen 1.0 and ratio of
computed probability of flow in opposite half of record
to plotting position. A zero value would indicate a
perfect forecast.

Method

1 2z 38 4 8 & 1 8
Maximum .53 .51 .56 .45 .56 .56 .51 .59

Decile .37 .34 .38 .27 .37 .37 .34 .40
Median 40 .12 .65 .19 .59 .44 .14 .52
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Table 14-5
Evaluation of Alternative Methods
Consistency Tests a and b, Average Values, A1l Stations

Test a--Root mean square difference between computed probabilities from
the two record halves for full record extreme, largest, upper
decile and median events. A zero value would indicate perfect

consistency.
Method
Event 1 2 3 & 5 6 1 8
Extreme .003 .006 .001 .010 .001 .002 .003 .002
Maximum ' .023 .019 ..008 .016 .008 .010 .010 .012
Upper Decile .072 .047 .043 .025 .037 .033 .025 .048
Median 119  ,076 .072 .047 .049 .045 .041 .131

Test b--Root mean square value of (1.0 minus the ratio of the smaller
to the larger computed probabilities from the two record halves)
for full record extreme, largest, upper decile and median
events. A zero value would indicate perfect consistency.

Method
Event 1 2 3 & 5 & 1 8
Extreme .87 .54 .46 .26 .39 .35 .29 .75
Max imum 74 - .45 41 .21 .34 .30 .24 .72
Upper Decile .50 .32 .31 .16 .24 .21 17 .58
Median 21 Jd4 0 LT2 .10 .08 .08 .07 .24
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Table 14-6
Evaluation of Outlier Techniques
Average Values, A1l Stations

Method
Accuracy Test b
Outlier
Technigue 1 2 3 4 5 6 7
a .061 .062 .071 .057 .074 .073 .062
b .056 .055 .060 .053 .063 .062 .055
c .052  .050 .054 .048 .057 .055 .05]
d .047 .045 ,048 .044 .051 .050 .045

Accuracy Test ¢
Outlier

Technique
a

01 j—
w
.
o N
2,
o1
~

b .57 .59 .59 .49 . .62 . .60 .58
c .58 .61 .60 .52 .64 .63 .60
d .65 .65 .64 .38 .68 .65 .64

Consistency Test a

Outlier
Technique 1 2 3 4 5 6 7
a .002 .005 .001 .009 .000 .002 .002
b .002 .004 .001 .008 .000 .002 .002
c .003 .003 .000 .007 .000 .002 .002
d .003 .003 .000 .007 .000 .002 .001

Consistency Test b

Outlier
Techniques 1 2 3 4 5 B 7
a .87 .56 46,27 .39 .36 .30

b .86 .56 .45 .28 .38 .35 .30
c .85 .56 .45 .29 .38 .35 .30
d .88 .59 .45 3 .38 .35 .32

A zero value would indicate perfect consistency.

Method 8 includes its unique technique for outliers and was, therefore,
not included in these tests.
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Table 14-7

Evaluation of Zero Flow Techniques
Average Values, All Stations

Accuracy Test b

Technique 1
a .057
b . 064

Accuracy Test ¢

Technique 1

a .46

b .51
Consistency Test a

Technique 1

a .007

b .007
Consistency Test b

Technique 1

a .89

b .86

2 3
.057 .059
.060 .070
2 3
.32 .59
.30 .59
2 3
.012 .000
.008 .000
2 3
.43 .44
.43 .44

Method

4 5
.057 .062
.057  .068

Method

4 5
.32 .40
.30 .40

Method

4 5
.014 .001
.012 .000

Method

4 5
.21 .39
.19 .40

&
.055
.061

.40
.41

.000
.001

s
.34
.38

A
.059

.061

«32
.31

.006
.004

7

.24
.23

Method 8 was not tested because logarithms are not used in its

fitting computations and therefore zero flows are not a problem.
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15 (3 sta)
16 (13 sta)
Average
Langbein

Note: Data limited to 226 stations originally selected for the study.

Table 14-8
Summary of Partial-Duration Ratios

Partial-duration frequencies
for annual-event frequencies of

14-28

. .2 .3 4 .5 .6 .7
.094 .203 .328 .475 .64 .844 1.10
.093 .209 .353 .517 .759 .001 1.30
.094 .206 .368 .507 .664 .862 1.18
.095 .218 .341 .535 .702 .903 1.21
.093 .213 .355 .510 .702 .928 1.34
134 .267 .393 .575 774 .008 1.33
.099 .248 412 .598 .826 .077 1.42
.082 211 .343 .525 .803 .083 1.52
.106 .234 .385 .553 .765 .982 1.26
.108 .248 410 .588 .776 .022 1.34
.094 .230 .389 .577 .836 .138 1.50
.103 .228 .352 .500 .710 .943 1.21
095 .224 .372 .562 .768 .986 1.30
100 .226 .371 .532 .709 .929 1.22
.099 .194 .301 .410 .609 .845 1.05
.106 .232 .355 .522 .696 .912 1.27
.099 .243 . 366 .532 .733 .964 1.28

- .105 .223 .356 .510 .693 .917 1.20



TABLE 14-9

ADJUSTMEMT RATIOS FOR 10-YEAR FLOOD

SAMPLE
SIZE ZONE 1 27 STATIONS AVG 1/2 RECORD = 26 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .54 .38 .76 .29 .82 .57 .28 -1.85
10-YR .75 45 1,02 -.27 .95 .37 .34 4,56
1/2-REC  1.21 .11 2.21  -1.04 .01  1.01  1.03 4.49
ZONE 2 ____24 STATIONS AVG 1/2 RECORD = 22 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .48 42 1.06 .64 03 .93 .4 -1.85
10-YR 1.01 94 1.9 .68 .60 1.3 .80 5,70
1/2-REC  1.33 1.33  2.76  -1.58 .90 .49 .54 7.14
ZONE_3 25 STATIONS ' AVG 1/2 RECORD = 24 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.41 1.32  1.92  1.02 .95 1.79  1.40 -1.85
10-YR 1.41 .81  1.80 .00 .87 .96 1.01 5.39
1/2-REC .98 4 1.65 -1.88 17 .21 .39 4.80
ZONE 4 15 STATIONS AVG_1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.05 .94 1.20 .85 .29 1.15 .94 -1.85
10-YR -.52 -.50 2 -.85 .01 -.54 -.45 3.68
1/2-REC .45 .02 1.63 -3.07 .63 .46 .25 5.57
ZONE 5 20 STATIONS AVG 1/2 RECORD = 25 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .55 .35 1.03 .15 .98 .88 .47 -1.85
10-YR .40 -.03 1.40 -.96 .61 .42 .19 7.37
1/2-REC .81 -.40  2.91 -3.61 42 .99 .67 6.23
ZONE 6 24 STATIONS AVG 1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .80 .36 1.19 .15 1 .95 .45 -1.85
10-YR 1.43 .18 2.26  -.98 .78 .96 .33 5.64
1/2-REC  1.08 -.45 2,94 -3.93 1.94 .07  -.04 6.14
ZONE 7 21 STATIONS AVG 1/2 RECORD = 20 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.15 1.19  1.69 1.29 1.62 1.59  1.29 -1.85
10-YR 1.58 1.36 2.34 Jd20 1.99 0 1.62  1.57 5.78
1/2-REC  1.97 1.00  2.45 =74 2.07 92 1.7 7.11
ZONE 8 23 STATIONS AVG 1/2 RECORD = 21 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .89 79 1.7 .79 1.41 1.36 .79 -1.85
10-YR -.66  -1.02 .29 -2.08 -.35 -.43 -1.02 4,52
1/2-REC -.13  -.87 2.28 -3.08 .74 .66  -.87 7.88
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TABLE 14-9 CONTINUED

ZONE 9 18 STATIONS AVG 1/2 RECORD = 25 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.38 1.02 2.05 .96 1.96 1.78 1.10 -1.85
10-YR 1.95 1.54 2.54 .75 2.49 2,22 1.69 5.76
1/2-REC .45 -.36 .97 -3.36 .45 -.07 -.27 4,07
ZONE 10 12 _STATIONS AVG 1/2 RECORD = 26 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR -.79 -.80 -4 -.83 -.43 -.43 =77 -1.85
10-YR -.03 -.42 .90 -1.16 .71 .35 -.22 4.24
1/2-REC .08 -1.27 1.24 ~5.10 .58 -.27  -1.27 2.97
ZONE 11 13 STATIONS AVG 1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.29 1.21 1.89 1.20 1.93 1.75 1.11 -1.85
10-YR 1.1 1.03 2.21 .04 1.87 1.25 1.03 6.78
1/2-REC .04 -.23 1.99 -2.93 1.20 1.20 -.23 5.32
ZONE 12 17 STATIONS AVG 1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.34 .73 1.34 .57 1.51 1.03 .80 -1.85
10-YR .79 4 .86 -.45 .92 -.44 .57 4.06
1/2-REC .19 -.31 .54 -2.94 .92 -.35 -.19 2.81
ZONE 13 17 STATIONS AVG 1/2 RECORD = 26 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.27 1.16 1.65 .96 1.77 1.52 1.19 -1.85
10-YR .26 .22 .88 -.83 .67 .42 .38 4.60
1/2-REC -.31 -1.52 .21 -4.89 A7 -.97 -1.12 2.88
ZONE 14 15 STATIONS AVG 1/2 RECORD = 25 YRS
METHOD 1 2 3 4 5 6 7 8

5-YR 1.72 1.65 2.12 1.61 2.19 2.00 1.65 -1.85
10-YR 2.60 2.50 3.17 1.88 2.82 1.87 2.56 6.80

1/2-REC .51 .61 1.83 -1.47 1.30 .29 .75 5.22
ZONE 15 3 STATIONS AVG 1/2 RECORD = 20 YRS
METHOD 1 2 3 4 5 6 7 8

5-YR 2.47  2.47 2.74 2.55 2.66 2.28 2.28  -1.85
10-YR  1.27 1.27 1.58 1.27 1.58  1.58 1.27 2.65
1/2-REC  3.29  3.29 3.29 2.79  3.29 1.90 3.29 6.33

ZONE 16 13 STATIONS AVG 1/2 RECORD = 24 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .69 .75 1.03 .66 1.09 1.05 .75 -1.85
10-YR .58 .42 .83 -.21 .76 .07 42 4.24
1/2-REC  1.41 .07 1.68 -3.43 1.25 .64 .07 5.29

ALL_ZONES 287 STATIONS AVG 1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .94 .79 1.38 J10 137 21 .81 -1.85
10-YR .87 .52 1.52 -.29  1.26 72 .60 5.27
1/2-REC .77 .04 1.93  -2.66 1.34 .40 a7 5.36

Values shown are ratios by which the theoretical adjustment for Gaussian-
distribution samples must be multiplied in order to convert from the com-
puted 0.1 probability to average observed probabilities in the reserved
data. See note table 14-11.
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SAMPLE
SIZE
METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

TABLE 14-10

ADJUSTMENT RATIOS FOR 100-YEAR FLOOD

ZONE 1 27 STATIONS AVG 1/2 RECORD = 26 YRS
1 2 3 4 5 6 7 8
1.35 1.1 1.27 .39 1.61 1.12 .88 -.25
1.50 1.10 2,05 -.25 2.42 1.73 .73 3.42
2.83  2.84 3.90 -1.06 4.89 3.67 1.66 5.28
ZONE 2 24 STATIONS AVG 1/2 RECORD = 22 YRS
1 2 3 4 5 6 7 8
91 .79 1.05 .31 1.27 1.13 .63 ~-.25
1.44  1.40 2.48 .63 2.4] 2.07 1.37 5.40
1.00 1.08 3.69 -.82 2,97 2.46 J4 7.16
ZONE 3 25 STATIONS AVG 1/2 RECORD = 24 YRS
1 2 3 4 5 6 7 8
1.80 1.18 1.76 A 2.05 1.86 1.29 -.25
2.42 1.15 2.43 -.04 2.84 1.62 1.32 4.79
2,90 1.4 3.36 ~1.12 .n 2,76  2.30 5.53
ZONE 4 15 STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
1.67 1.48 1.45 .59 2.27 2,02 1.64 -.25
.67 .35 .56 -.48 1.07 .46 42 1.50
1.86 .48 1.5 -1,15 2.83 .88 1.03 3.81
ZONE 5 20 STATIONS AVG 1/2 RECORD = 25 YRS
1 2 3 4 5 6 7 8
1.03 .64 1.37 .24 1.9 1.12 .82 -.25
1.22 .57 1.42 -.29 1.27 1.09 .80 5.65
2.97 .21 4,38 ~1.24 2,97 2.39 1.68 7.25
ZONE 6 24 STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
1.15 .67 1.02 .04 1.17 .88 .76 -.25
2.30 .55 1.67 =.27 1.78  1.10 .66 4.43
1.20 -.23 3.22 -1.24 2.45 79 - .46 5.09
ZONE 7 21 _STATIONS AVG 1/2 RECORD = 20 YRS
1 2 3 4 5 6 7 8
1.04  1.07 2.23 .28 2,20 2.6 1.20 -.25
.18 1.09 2.66 =-.19 2.54 2,20 1.53 5.40
3.10 .47 .92 -.80 2,99 2,29 1.74 8.33
ZONE 8 23 STATIONS AVG 1/2 RECORD = 21 YRS
1 2 3 4 5 6 7 8
.57 27 2.08 .01 1.66 1.52 .27 -.25
1.30 Jd4 1,59 =35 1,15 93 - .14 4.17
.82 =32 4.36 -1.13 2,16 2.6 -.32 8.49
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METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR

1/2-REC

METHOD
“B=YR
210-YR
“1/2-REC
METHOD
5-YR
10-YR
1/2-REC

TABLE 14-10 CONTINUED

ZONE 9 18 STATIONS AVG 1/2 RECORD = 25 YRS
1 2 3 4 5 6 7 8
1.07  1.33  1.90 72 2.1 2,11 1.50  -.25
2,45 2,23 3.2 90 3.75  3.55 2.57  4.39
1.07 .39 2,90 -1.72 3.78  2.38 .66 4.49
ZONE 10 12 STATIONS AVG 1/2 RECORD = 26 YRS
1 2 3 4 5 6 7 8
-0 -.10 27 =25 .29 .29  -.06 -.25
.21 -5 .96 .59 1.06 .75 5 2.55
3.29  -.27  1.63  -1.79 242 1.32  -.27  4.40
ZONE 11 13 STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
.68 0 1,79 A1 1,58 1.54 .66 -.25
2.41 1.8 4.14 7 376 3.43  1.28  6.64
.30 79 5,40  -1.08 3,05 2,43 50 9.77
ZONE 12 17_STATIONS AVG 1/2 RECORD = 23 YRS
1 3 4 5 6 7 8
1.8 110 1,16 A4 1,56 1,19 1,19 -.25
1.99  1.93 1.5 J3 0 227 .04 2. 2.60
3.77 1.65 2,92 -1.33 4,39 2,57 1.86  1.82
ZONE 13 17_STATIONS AVG 1/2 RECORD = 26 YRS
1 2 3 4 5 6 7 8-
1.63 .87 1.2 .50 1.63 1.26 1.04  -.25
.58 37 127 -28 141 1,25 .60  3.28
1.01  -.07 220 -1.81 2.57 1.6 .81 2.69
ZONE_14 15_STATIONS AVG 1/2 RECORD = 25 YRS
1 2 3 4 5 6 7 8
1.5 1.4 1,79 65 2.43  2.21 1.4 -.25
2,92 2.22  2.58 .23 3,53 1.98 2.3 5.16
2,11 2.80  3.76 -1.52 4.40 3,10  2.80  5.37
ZONE_15 3 STATIONS AVG 1/2 RECORD = 20 YRS
1 2 3 4 5 6 7 8
2,09 2.24 2,24 1.24 2,76 1.98  1.50 -.25
.26 .26 .26 -.59 .84 1.84 26 1.72
1.80 1.80 93 -1.31 4,37 3.16 .93 .93
ZONE 16 13 STATIONS AVG 1/2 RECORD = 24 YRS
1 2 3 4 5 6 7 8
.67 .55 .90 8 1,30 1.22 .62 -.25
1.87 1.23 1.63 -.59 1.83 .99  1.33 3.64
4,21 1.7 3.9 -1.27  4.41 2.90  2.13  4.46
~ ALL ZONES 287 STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
1.16 90 1.45 .32 1.65 1.45 94  -.25
1.64 1,03  2.01 -.07 2,20 1.62 1.2 4.25
2.12 .87 3.40 -1,23 335 2,30 1.14 5,66

Values shown are ratios by which the theoretical adjustment for Gaussian-
distribution samples must be multiplied in order to convert from the com-
puted 0.01 probability to average observed probabilities in the reserved

data.

See note table 14-11.
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TABLE 14-11

ADJUSTMENT RATIOS FOR 1000-YEAR FLOOD

SAMPLE
SIZE ZONE 1 27 STATIONS AVG 1/2 RECORD = 26 YRS
METHOD - 1 2 3 2 5 6 7 .8
5-YR 2,03 1.10 1.19 21 2.2 .44 .85 -.04
10-YR 2.30 .88 2.21 -.14 2,98  1.87 .52 4.06
1/2-REC 5.01  4.13 6.94 -.56 10.11 8.16  1.66 8.54
ZONE 2 24 STATIONS AVG 1/2 RECORD = 22 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.31 .83 1.18 a5 1,57 1.35 .68 -.04
10-YR 1.98  2.85 3.85 .64 4,45 3,66 2.07 7.41
1/2-REC  1.93 2.1 4,47  -.45 3,5  3.56 1.58 8.81
ZONE 3 25 STATIONS AVG 1/2 RECORD = 24 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 2.42  1.22 2.18 -.01  2.54 2,08 1.24 -.04
10-YR 6.06 2.20 3.06 -.14 3,89 - 1.82 2.20 7.1
1/2-REC  7.41 2.44 6.77 -.51  7.06 4.82 2.77 11.16
ZONE 4 15_STATIONS AVG 1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.88  1.50 1.46 30 2.48 2,05  1.63 -.04
10-YR 1.24 .54 .47 -1 1.3 .36 71 1.33
1/2-REC  2.86 .80 2.1 -.48  3.60 3.60  2.40 2.81
Z0NE 5 20 STATIONS AVG 1/2 RECORD = 25 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.84 .94 1.36 49 1,92 1.45  1.32 -.04
10-YR 2.75 .56 2.90 -.14  2.43 2,00 .91 6.02
1/2-REC 5.51  .1.39 5.76 -.52 5.8 530 3.2 11.70
' ZONE_6 24 STATIONS AVG 1/2 RECORD = 23 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.9 .61 1.08 .07 1.5 1.13 .79 -.04
10-YR 3.99 .57 1.73 -.06  2.33  1.57  1.12 4.53
1/2-REC  2.88  1.38 2.47 -.48  2.06 1.63 1.24 8.92
ZONE 7 _ 21 STATIONS AVG 1/2 RECORD = 20 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR 1.19 .82 1.91 .19 2,18 1.89 1.40 -.04
10-YR 2,33 .9 3.58 13 3.25 2,15 1.53  6.52
1/2-REC  5.99  1.48 5.36 .16 3.90 3.90 2.3 12.51
ZONE 8 23 STATIONS AVG 1/2 RECORD = 21 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .83 .09 1.28 -.01 .83 .83 14 -.04
10-YR 2.79 42 2.68 -4 1,78 1.78 42 5.90
1/2-REC 2.70 .84  7.62 -.41 3.5 3.5 1.32  13.6
ZONE 9 18 STATIONS AVG 1/2 RECORD = 25 YRS
METHOD 1 2 3 4 5 6 7 8
5-YR .90 1.30 1.37 49 2,33 2,33 1.55 -.04
10-YR 3.61  3.59 3.22 .42 5.8 58  3.90 6.24
1/2-REC  3.59 .59 3.97 -.53 2,68 1.04 . 1.07 6.92
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METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2~REC

METHOD
5-YR
10-YR
1/2~REC

METHOD
5-YR
10-YR
1/2-REC

METHOD
5-YR
10-YR
1/2-REC

TABLE 14-11 CONTINUED

ZONE_10 12 STATIONS AVG 1/2 RECORD = 26 YRS
1 2 3 4 5 6 7 8
02 -.04 .25 -.04 .22 .22 -.086  -.0
A4 -4 .70 -4 .67 43 -4 3.79
7.1 .27 3.0 -5 1,95 1.95 .27  4.50
ZONE 11 13 STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
.13 1.01 2,15 .20 213 1,78 .94 -.04
4,31 2.44 5,95 .72 5.06 3.58 1.0  10.41
1.7 .91 6.38  -.06 5.01 4.24 .91 15.65
ZONE 12 17_STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
2.84  1.22 1.3 .45 2,03 1.51  1.27  -.08
4.30 2.17  2.52 L0 427 1.60 2.7 3.37
8.58 .75 75 -.46  2.20 1.3 .75 4.59
Z0NE 13 17 STATIONS AVG 1/2 RECORD = 26 YRS
1 2 3 4 5 6 7 8
1.8 1.21  1.11 32 192 1.79 1.21 -.04
.27 .36 1.3 -4 177 1.77 .53 3.56
4.0 -.57  2.83  -.57 3.65 2.43 .55  4.96
ZONE_14 15 STATIONS AVG 1/2 RECORD = 25 YRS
1 2 3 4 5 6 7 8
.91  1.45  1.56 .47 2.66 2.03 1.45  -,04
5.41 2,35  2.81  -.14 4.63 2.7 2.35  5.56
3.45 1.04 512  -.53 9,90 6.99 1.04  6.69
ZONE_15 3 STATIONS AVG_1/2 RECORD = 20 YRS
1 2 3 4 5 6 7 8
2.67 3.00 2.5  -.06 3,51 1.25 1.77  -.04
<14 -4 -4 -4 1.87 1,87 -4 -4
217 217  -.38  -.38  6.15 6.15 -.38  -.38
ZONE 16 13 STATIONS AVG 1/2 RECORD = 24 YRS
1 2 3 4 5 6 7 8
69 .62 1.5  -.04 1.40 1.18 .69 -.08
4.02  1.56  3.05  -.14  3.90 1.97 2.01  4.46
8,74 2.37 7.24 .51 8.3 6.21 3.76  7.24
ALL ZONES 287 STATIONS AVG 1/2 RECORD = 23 YRS
1 2 3 4 5 6 7 8
1,60 .95  1.40 .21 1.8 1.5 1,01 -.04
313 1.40  2.66 04 3,22 219 1.45  5.36
4.66 1.49  4.81  -.45 4,99 4,02 1,68  8.80

Values shown are ratios by which the theoretical adjustment for Gaussian-
distribution samples must be multiplied in order to convert from the
computed 0,001 probability to average observed probabilities in the re-
served data.
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Table 14-11 CONTINUED

Values in table 14-11 are obtained as follows:

a. Compute the magnitude corresponding to a given
exceedance probability for the best-fit function.

b. Count proportion of values in remainder of record
that exceed this magnitude.

C. Subtract the specified probability from b.

d. Compute the Gaussian deviate that would correspond
to the specified probability.

e. Compute the expected probability for the given sample
size (record length used) and the Gaussian deviate determined in
d.

f. Subtract the specified probability from e.
g. Dijvide f by c.

*U.S. GOVERNMENT PRINTING OFFICE:1983- 381-614/209
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GENFRALIZED SKEW COEFFICIENTS OF LOGARITHMS OF ANNUAL MAXIMUM STREAMFLOW

AVERAGE SKEW COEFFICIENT BY ONE DEGREE QUADRANGLES

Lower number in each quadrangle is number of stream gaging stations for which the average shown above it was computed




GENERALIZED SKEW COEFFICIENTS OF ANNUAL
MAXIMUM STREAMFLOW LOGARITHMS

AUGUST 1975 EDITION

The generalized skew map was developed for those guide users who
prefer not to develop their own generalized skew re]ationships; The map
was developed from readily available data. Users are encodraged to make
detailed studies for their region of interest using the procédures
outlined in Section V,B-2. It is expected that Plate I will be revised
as more data become available and more extensive studies are‘comp1eted.

The map is of generalized logarithmic skew coefficients of annual
 peak discharge. It is based on skew coefficients at 2,972 stream gaging
stations. These are all the stations available on USGS tape files with
drainage areas equal to or less than 3,000 square miles that had 25 or
more years of essentially unregulated annual peaks through water year
1973. Periods when the annual peak discharge 1ikely differed from
natural flow by more than about 15 percent were not used. At 144 stations
the lowest annual peak was judged to be a low outlier by equation 5
using G from figure 14-1 and was not used in computing the skew coeffi-
cient. At 28 stations where the annual peak flow for one or more years
was zero, only the remaining years were used in computing the low outlier
test and in computing the logarithmic skew coefficients. No attempt was
‘made -to identify and treat high outliers, to use historic flood informa-
tion, or to make a detailed evaluation of each frequency curve.

The generalized map of skew coefficients was developed using the
averaging technique described in the guide. Preliminary attgmpts to
determine prediction equations relating skew coefficients to basin
characteristics indicated that such relations would not appreciably
affect the isopleth position. Averages used in defining the isopleths
were for groups of 15 or more stations in areas covering four or more
one-degree quadrangles of latitude and longitude.



The average skew coefficients for all gaging stations in each one-
degree quadrangle of latitude and longitude and the number of stations
are also shown on the map. Average skew coefficients for selected groups
of one-degree quadrangles were computed by weighting averages for one-
degree quadrangles according to the number of stations. The averages
for various groups of quadrangles were used to establish the maximum and
minimum values shown by the isopleths and to position the intermediate
lines.

Because the average skew for 15 or more stations with 25 or more
years of record is subject to time sampling error, especially when the
stations are closely grouped, the smoothed lines are allowed to depart a
few tenths from some group averages. The standard deviation of station
values of skew coefficient about the isopleth l1ine is about 0U.55 nation-
wide.

Only enough isopleths are shown to define the variations. Linear
interpolation between isopleths is recommended.

The generalized skew coefficient of -0.05 shown for all of Hawaii
is the average for 30 stream gaging stations. The generalized skew
coefficient of 0.33 shown for southeastern Alaska is the average for the
10 stations in that part of the State. The coefficient of 0.70 shown
for the remainder of Alaska is based on skew coefficients at nine stations
in the Anchorage-Fairbanks area. The average skew of 0.85 for these
nine stations was arbitrarily reduced to Lhe maximum generalized skew
coefficient shown for conterminous United States in view of the possi-
bility that the average for the period sampled may be too large.

*This generalized skew map was originally prepared for Bulletin 17 published

in 1976. It has not been revised utilizing the techniques recommended in
Bulletin 17B.





