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Abstract:

Forecast ensembles of hydrological and hydrometeorologial variables are prone to various uncertainties arising from climatology,
model structure and parameters, and initial conditions at the forecast date. Post-processing methods are usually applied to adjust
the mean and variance of the ensemble without any knowledge about the uncertainty sources. This study initially addresses the
drawbacks of a commonly used statistical technique, quantile mapping (QM), in bias correction of hydrologic forecasts. Then, an
auxiliary variable, the failure index (g), is proposed to estimate the ineffectiveness of the post-processing method based on the
agreement of adjusted forecasts with corresponding observations during an analysis period prior to the forecast date. An
alternative post-processor based on copula functions is then introduced such that marginal distributions of observations and
model simulations are combined to create a multivariate joint distribution. A set of 2500 hypothetical forecast ensembles with
parametric marginal distributions of simulated and observed variables are post-processed with both QM and the proposed
multivariate post-processor. Deterministic forecast skills show that the proposed copula-based post-processing is more effective
than the QM method in improving the forecasts. It is found that the performance of QM is highly correlated with the failure
index, unlike the multivariate post-processor. In probabilistic metrics, the proposed multivariate post-processor generally
outperforms QM. Further evaluation of techniques is conducted for river flow forecast of Sprague River basin in southern
Oregon. Results show that the multivariate post-processor performs better than the QM technique; it reduces the ensemble spread
and is a more reliable approach for improving the forecast. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Background

Seasonal water supply outlooks, or volume of total
seasonal runoff, are routinely used by water managers and
decision makers for making commitments for water
deliveries, determining industrial and agricultural water
allocations, and operating reservoirs for multiple uses
such as hydropower and flood control. These forecasts
can either be seasonal volumes based on statistical
regression equations or ensembles of hydrographs
produced by hydrologic models, the so-called ensemble
streamflow prediction (ESP). In ESP (Twedt et al., 1977;
and Day, 1985), the hydrologic model is driven for
historical time period until the initial condition (IC) of the
basin is obtained. The hydrologic model is then run with the
resampled historical meteorological data to generate an
ensemble of possible streamflow forecasts for the future
time periods. In ESP, future meteorological condition is
assumed to mimic the historical meteorology but with an
uncertainty of not knowing exactly what historical condition
may happen in the future; therefore, creating an ensemble of
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hydrologic forecasts reflect the uncertainty in the forcing
data. Moreover, hydrologic models and consequently
ensemble forecasts are prone to several additional sources
of uncertainty making the ensemble forecasts probably
biased or over/under dispersed.
Several techniques have been employed to incorporate

all sources of uncertainty in ESP. Recent studies have
examined or developed techniques that have potential to
provide skillful predictions of seasonal runoff volume
using statistical methods by means of optimal predictor
selection (e.g. Moradkhani and Meier, 2010), using ESP
combined with data assimilation (Dechant andMoradkhani,
2011) or using weighted ESP traces according to climate
signals (Najafi et al., 2012). An ensemble of forecast
trajectories is generally generated to capture total forecast
uncertainty due to several sources of uncertainty including
atmospheric forcing, IC, model structure, and parameters
(Moradkhani and Sorooshian, 2008; Olsson and Lindström,
2008; Wood and Lettenmaier, 2008; DeChant and
Moradkhani, 2011; Moradkhani et al., in review; Parrish
et al., 2012). In generating the ensemble of forecasts,
different methodologies may be employed. In hydrologic
applicationswith the lack of knowledge about future climate
conditions, the sampling of historical meteorological data
can provide a range of possible future climate condition
used for generating the ensemble hydrologic forecasts
(McEnery et al., 2005; Wood and Lettenmaier, 2008). To
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improve forecast skill, some studies generate ESPs from
meteorological forecast ensembles made by numerical
weather prediction models (Clark and Hay, 2004; Roulin
and Vannitsem, 2005; Thirel et al., 2008; Li et al., 2009;
Najafi et al., 2012). To address the uncertainty of ICs at the
forecast date, Wood and Lettenmaier (2008) proposed
reverse-ESP approach, while resampled historical climat-
ology was used as the forcing of forecast horizon. Their
results indicated that the impact of uncertain ICs on the
forecast quality is related to the forecast date, lead time,
and the area of study. In a recent study, DeChant and
Moradkhani (2011) employed the data assimilation method
as a flexible and statistically defensible procedure to
quantify the IC uncertainty by obtaining the probability
distribution function (PDF) of state variables at the time
of forecast and then used those for generating ESPs. In
meteorological forecasts, however, some recent studies
suggest generating the ensemble of precipitation or
temperature forecasts from the single-valued forecasts
(Schaake et al., 2007). Using bivariate meta-Gaussian
distribution (Kelly and Krzysztofowicz, 1997) to join the
model output (forecast;Y) and observations (X), the forecast
ensemble is generated from the conditional distribution of
observed values given the single-valued forecast ( fY |X(y|x))
at each time step within the forecast horizon. Assigning
bivariate Gaussian distribution to the forecast and observed
variables necessitates the transformation of non-normal
variables (X and Y) to the standard normal variables
(U and V) using their marginal distributions (FX(x),FY(y)).
Brown and Seo (2010), however, argued that back and forth
transformation from the Gaussian space can invalidate the
optimality of estimated parameters of the conditional
probability distribution.
Post-processing

In spite of the efforts to incorporate all sources of
uncertainty into the forecast, and regardless of the
methodologies applied to generate the forecast ensembles,
they are still subject to errors and systematic biases. This
means that post-processing is still necessary to ensure that
ensemble forecasts are unbiased and have the proper
dispersion. Several techniques have been tried to
accomplish this, which are reviewed below. In an initial
study to remove the forecast errors, Smith et al. (1992)
assumed constant errors multiplied by the monthly
simulations generated from a particular forcing regardless
of the ICs at the forecast date. The multiplied error was
estimated by historical simulations and observations.
Another post-processing method applied to forecast
ensembles is the quantile mapping (QM) technique
(Hashino et al., 2006; Wood and Lettenmaier, 2006;
Biagorria et al., 2007; Piani et al., 2010; among others).
With this method, a mapping between observation and
simulation cumulative distribution functions (CDFs) is
used. The observation and simulation CDFs may be
estimated by either empirical CDFs or parametric
distributions fitted to historical data (Ines and Hansen,
2006; Piani et al., 2010). A major drawback of this
Copyright © 2012 John Wiley & Sons, Ltd.
method, however, is that it does not maintain the pairing
of corresponding simulated and observed flows. To
restrict the shortcoming of QM technique, Madadgar
and Moradkhani (2011) generated several ESPs for
various analysis periods prior to the forecast period.
Several simulation CDFs were produced for the simula-
tions associated with each historical forcing implemented
on the analysis periods, which are then used for bias
correction of the forecast trajectory corresponding to that
particular forcing. Bias correction of forecasts with
particular CDFs produced specifically for each forcing
data reduces the forcing uncertainty of QM method. In a
recent study, Candille et al. (2010) applied a bias
correction method with the so called ‘on the fly’ scheme
(Cui et al., 2008) updating and correcting the ensemble
bias over time. In their study, the multi ensemble, from
the so-called North American Ensemble Forecast System
comprising National Centres for Environmental Prediction
and Meteorological Service of Canada ensembles, are
bias corrected through individual on-the-fly analysis
scheme for each model of ESP. Only the variables with
normally distributed errors like temperature and wind
vector components were bias corrected, and the results
indicated that the reliability of forecasts was improved
when on-the-fly method was in use. In another study,
Djalalova et al. (2010) used the Kalman–Filter (KF)
method (Brookner, 1998) to estimate the bias from air
quality forecasts. They used the data from the 7 past days
to implement the KF bias correction, and their results
confirmed the advantage of employed bias correction
methods in improving forecast skill.
Bias correction of forecasts is mathematically equiva-

lent to estimating the conditional probability distribution
of the observed variable given the real-time forecast. To
approximate the conditional probability of the observa-
tion given a forecast, their joint probability should first be
estimated. The bivariate normal distribution is usually
applied to join the forecast and observed variables during
an analysis period (Schaake et al., 2007; Zhao et al.,
2011). Zhao et al. (2011) assumed Gaussian marginal
distributions of both simulations and observations, which
further required transformation of raw variables to the
standard normal variates. They used the normal quantile
transformation proposed by Krzysztofowicz (1997) for
variable transformation. Todini (2008), introduced the
Model Conditional Processor where the multivariate
normal distribution was used to estimate the predictive
uncertainty of forecast variable conditioned on the
predictions of several models. Similar to Zhao et al.
(2011), the uncertainty processor proposed by Todini
(2008) required the marginal distributions to be normal
distributions. However, Brown and Seo (2010, 2012)
argued the drawbacks of fitting parametric distributions to
the observations and simulations and proposed a non-
parametric post-processor analogous to indicator co-Kriging
in geostatistics (Isaaks and Srivastava, 1989). They also
discussed that, according to the aggregate effect of various
physical processes on meteorological and hydrological
variables, the joint behaviour of their observations and
Hydrol. Process. 28, 104–122 (2014)
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simulations is not usually well-fitted to any parametric
distributions. Instead, they proposed a non-parametric
method based on Bayesian optimal linear estimation of
indicator variables as described by Schweppe (1973). The
proposed conditional probability is estimated as the non-
exceedance probability of a discrete threshold of the
observed variable (x≤ ca; e. g. ca= f lood stage) given the
forecast of the jth ensemble member (zj). To capture
the accurate shape of conditional probability, a large number
of thresholds should be defined for the observed variable. A
shortcoming of this technique, however, is its inability to
specify the conditional probability of a certain observed
value given the forecast. In fact, using the non-parametric
probability does not allow the conditional probability to be
estimated at a particular threshold but rather enables
the approximation of the conditional probability of either
exceeding or non-exceeding the thresholds. Furthermore,
the size of the forecast ensemble is an effective factor in the
accurate estimation of the non-parametric conditional
probability. Thus, for an accurate estimation of the
expectation operator, a relatively large number of forecast
members is required.
The present study proposes an alternative approach by

applying a group of multivariable probability functions,
the so-called copula functions, which do not make any
restriction on the type of marginal distributions. Using
copula functions, the conditional probability of the
observed variable can be estimated at any particular
forecast value. Furthermore, as discussed later, the copula
functions bind the marginal CDFs. Hence, unknown and
complicated relationships in hydrological processes do
not hinder fitting the multivariable joint distribution to the
observed and forecast variables.
Copula functions, supported by Sklar’s Theorem (Sklar,

1959), are multivariate joint distributions of univariate
marginal distributions being uniform on the interval [0, 1]
(Joe, 1997; Nelsen, 1999). They are capable ofmodeling the
joint behaviour of variables with any level of correlation
and dependency; therefore, they seem to offer a potential
procedure in post-processing of hydrological and hydro-
meteorological forecasts. Copula applications were initially
reported in the area of finance and econometrics (Embrechts
et al., 2003; Cherubini et al., 2004), while its application in
hydrology has received increasing attention over the past
few years. As a multivariable joint distribution, they have
been frequently employed in flood analyses (e.g., Favre
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Figure 1. Schematic of quantile mapping technique in
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et al., 2004; De Michele et al., 2005; Zhang and Singh,
2007a; Salvadori and De Michele, 2010), rainfall event
analyses (Salvadori and De Michele, 2006; Zhang and
Singh, 2007b; Kao and Govindaraju, 2008), and low flow
events and drought analyses (Shiau, 2006; Dupuis, 2007;
Kao and Govindaraju, 2010; Wong et al., 2010; Madadgar
and Moradkhani, 2012).
The aim of this study is first to evaluate and better

understand the characteristics of the QMmethod in the bias
correction of hydrological forecasts and then to introduce
copula functions as an alternative post-processor for ESPs.
An auxiliary variable, the so-called failure index, is also
proposed to estimate the performance of the QM technique
from the observations and model simulations during an
analysis period. The paper is organized as follows. Section 2
explains the QM technique in bias correction of forecasts
and addresses the limitations of this method. Thereafter, the
failure index reflecting the efficiency of QM performance is
proposed. Section 3 describes the mathematics of copula
functions and modifies the conditional probability of the
bias correction procedure to make it compatible for copulas
application. Evaluation of both bias correction methods in
Section 4 includes a set of hypothetical case studies and a
real case study of river flow forecasts for the Sprague River
basin in southern Oregon. Finally, Section 5 provides
the conclusion.
A NEW INDEX FOR ANALYZING THE POST-
PROCESSING METHODS

QM is a statistical technique and the most popular post-
processing method in hydrologic forecasting that adjusts
model forecasts based upon the CDFs of historical
observations and model simulations. The approach was
primarily designed to remove bias from forecasts;
however, its outcome is not always appropriate and under
some circumstances, discussed later in this section, may
degrade rather than improve the results. In the QM
approach, as shown in Figure 1, the forecast quantile at a
given time is found from the simulation CDF, and the
corresponding observed quantile is taken from the
observation CDF to adjust the forecast. A major
drawback of this approach, however, is that the pairing
between individual simulated and observed values is not
preserved, the two CDFs being constructed independently
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from each other, so this connection is not represented in
any way. Therefore, QM may be also called a ‘blind-
matching’ approach that sometimes degrades the results;
and in some circumstances, as shown in Figure 2, the
adjusted simulated values may deviate even further from
the observations than the unadjusted simulated values. As
seen in Figure 2, at t= 3, the bias-corrected simulation
after QM does not get closer to the corresponding
observation but rather moves further away from the
observation, creating an even larger error. In other words,
the direction of the desired move (towards the observation)
is opposite from the adjustment move (by QM application).
However, unlike the improper adjustment at t=3, the
original forecast at t=7 moves towards the observed value,
and then QM at this point has a positive effect. A large
number of points with adjustments in the opposite direction
of what is desired may lead to the overall deficiency of the
QM method.
Using the historical observations and model simulations,

this study proposes a measure (g) to predict the overall
performance of the post-processing methods like QM
technique:

g ¼ 1
T

XT
t¼1

I bt < 0ð Þ or bt > 2ð Þf g (1)

bt ¼
xt � yt
ot � yt

(2)

xt ¼ FO
�1 FY ytð Þf g (3)

where, ot and yt are the observation and simulation,
respectively, at time t; xt is the QM-adjusted simulation at
time t; FO and FY are the CDF of observations and
simulations, respectively; T is the number of time steps in
the analysis (historical) period; and I(.) is the Indicator
function defined as follows:

I bt < 0ð Þ or bt > 2ð Þf g ¼ 1 if bt < 0ð Þ or bt > 2ð Þ 8t 2 1; T½ �
0 Otherwise

�
(4)

The proposed index, g, hereinafter called failure ratio of
QM, is the fraction of time steps during the analysis period
whenbt is negative or greater than 2. Indeed, g represents the
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frequency of simulated values being degraded after QM
application, varying between 0 and 1. The term b calculates
the ratio of the difference between the simulated and
adjusted values to the difference between the simulated and
observed values (elaborated later), and it can take any real
number in R. Since observations are not available for the
forecast time period, the QM technique is employed for the
analysis period to adjust the simulations and derive g to
predict the performance of QM in forecast mode. It is noted
that in the QM technique, the behaviour of the entire system
is assumed to be similar in both the analysis and forecast
periods, which is equivalent to having identical CDFs in
these two periods.
In case of a river flow forecast, b maps the non-

negative values of yt, ot, and xt to a real number R ;
b : [0,1)3! (�1,1). In perfect adjustments, bt is equal
to 1, meaning that the adjusted forecast exactly equals the
observation. Any time that the simulation change is not
towards the observation, i.e. the movements are not in the
same direction, bt would be negative (Figure 3). Add-
itionally, if both changes have the same direction whereas
(xt� yt)>> (ot� yt), bt may become greater than 2. Data
point b in Figure 3 shows the situation where both moves
are in the same direction but the (xt� yt) is more than
twice the (ot� yt). As can be seen, the absolute error after
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such an adjustment would be greater than the absolute
error before the adjustment. Furthermore, as seen in data
point a, the opposite direction of movement causes a
larger error regardless of the amount of move. Therefore,
bt values smaller than zero or greater than 2 are associated
with the data points where the QM method does not
perform effectively. And, according to Equation (1), g
(failure index) reflects the frequency of such data points
in the analysis period in which the QM technique would
have a negative impact on them.
Hence, small values of g state that the QM technique

has been ineffective at only a small number of data points,
and as the value of g increases, more and more data points
are negatively affected by the QM method. Therefore,
efficient performance of the QM should be accompanied
by a small value of g in Equation (1).
For more clarification on b as the main component of

the failure index, two different cases are shown in
Figure 4. Simulation and observation time series are fitted
to lognormal distributions in each case with different
parameter values. The first row of the plots shows
associated CDFs, and the second row shows their PDFs.
Case A represents a situation where simulated values are
very different from the observed values, that is, there is
little to no overlap between the simulation and observation
ranges as seen in the PDF plots. In such circumstances,
moving from the simulated value to the adjusted value is in
the same direction asmoving from the simulated value to the
observed value regardless of where it is located in the range
of observations. b is therefore always positive, andQM is an
effective approach unless b exceeds 2 in too many points.
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Cases with CDFs located close to each other probably have
more frequent points with b> 2. Case B shows a situation
where an overlap of simulated and observed values occurs.
As depicted in the CDF plot, depending on where a
simulated value is located, the direction of movement to the
adjusted value differs; it may be either towards the
corresponding observation or in the opposite direction.
Therefore, both positive and negative signs are possible for
b. Moreover, b> 2 may also occur frequently in such cases.
Hence, QM usually functions effectively in cases with
distant CDFs and very small or no overlapped PDFs.
However, it is more likely that the QM fails where the CDFs
are close or the PDFs are largely overlapped. This makes
intuitive sense. Despite the deficiency in the QM technique
by not accounting for the pairing between individual
simulated and observed values, it can still be helpful in
correcting gross differences between simulated and
observed values. However, when the two distributions are
relatively close, as would be the case for a well-calibrated
hydrologic model, this deficiency in the QM technique
becomes more significant, and the technique may fail.
POST-PROCESSING BY COPULA FUNCTIONS

Copulas are joint CDFs of univariate marginal distribu-
tions being uniform on the interval [0, 1], i.e. C : [0,1]d

[0,1] (Joe, 1997; Nelsen, 1999). Supported by Sklar’s
Theorem (Sklar, 1959), copulas are able to express the
joint behaviour among correlated variables through their
marginal CDFs:
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H x1; x2 . . . ; xnð Þ ¼ C FX1 x1ð Þ;FX2 x2ð Þ; . . . ;FXn xnð Þ½ �
¼ C u1; u2 . . . ; unð Þ (5)

where, xi is the ith random variable; H(.) is the joint
distribution of random variables; FX(.)(.) is the marginal
distribution of X(.) random variable; C is the copula
function; and ui corresponds to the ith uniformly
distributed variable transformed from xi using its marginal
distribution functionFXi xið Þ. A copula satisfies the following
properties:

• Boundary conditions

1) C(u) = 0 if { ui= 0, i =2’}; i.e. there is at least one
component of u where ui= 0, ’ is the null set.

2) C(u) = u if { ui= u, uj= 1 8 j 6¼ i}; i.e. all components
of u are equal to 1 except ui

• Increasing condition

The probability of any n-dimensional hypercube in the

unit hypercube is non-negative:
X2
k1¼1

. . .
X2
kn¼1

�1ð Þ

Xn
i¼1

ki

C u1 k1 ; . . . ; ; ui ki ; . . . ; ; un knð Þ≥0 for all 0≤ ui1≤ ui2≤ 1
where in 2D copula, the conditions are simplified to:

• Boundary conditions

3ÞC u1; 0ð Þ ¼ C 0; u2ð Þ ¼ 0

4ÞC u1; 1ð Þ ¼ u1 ; C 1; u2ð Þ ¼ u2

� Increasing condition

C(u12,u22) +C(u11,u21)≥C(u12,u21) +C(u11,u22) for u11≤
u12 and u21≤ u22
According to Equation (5), copulas return the multivariate
joint probability of random variables:

C u1; . . . ; ; unð Þ ¼ Pr U1≤u1; . . . ;Un≤unf g (6)

While the copula density, c(u1, . . .,un), is defined as:

c u1; . . . ; ; unð Þ ¼ @n C u1 . . . ; unð Þ
@u1 . . . @un

(7)

The joint density function can be also decomposed as
follows:

f x1 . . . ; xnð Þ ¼ c u1; . . . ; ; unð Þ
Yn

i¼1
fXi xið Þ (8)

The main advantage of copula application is to use
separate marginal distributions of random variables while
Copyright © 2012 John Wiley & Sons, Ltd.
at the same time their inherent correlations are reflected.
Random variables with some level of dependency and
correlation are joined through copula functions. There are
several families of copula with different properties,
among which the Elliptical and Archimedean families
(Nelsen, 1999; Embrechts et al., 2003) are employed in
this study. Later, in section 4, we summarize a list of
copula functions used in this study; where the Gaussian
and t-copulas are the Elliptical copula, and Gumbel,
Clayton, and Frank copulas are the Archimedean copulas.
Elliptical copulas are only able to model the group of
variables with a positive-definite correlation matrix. They
can also reflect all pair-wise correlations among the
variables with any level of correlation. It is statistically
proved that a covariance matrix is positive-definite matrix
unless one variable is an exact linear combination of the
others. Therefore, to ensure the application of the
Elliptical family of copulas in real applications, correl-
ation matrix is defined in forms of the covariance matrix.
Moreover, this family of copulas does not have a closed-
form expression. Unlike Elliptical copulas, the Archime-
dean copulas have closed-form expressions but do not
preserve all pair-wise correlations for problems with more
than two variables. Archimedean copulas are divided into
symmetric and asymmetric functions; Gumbel and
Clayton copulas are from the asymmetric group, and the
Frank copula is from the symmetric group.
Since observations and model simulations are corre-

lated variables, copulas can be applied to bind them; and
by means of some mathematical efforts, copulas appear to
have good potential in bias correction of prediction
ensembles. Unlike the QM method, copula-based post-
processing would be based upon the joint behaviour of
historical observations and simulations, avoiding the
drawbacks of ‘blind-matching’ from ignoring the joint
behaviour of these variables in the QM method as
discussed earlier. To benefit from copulas in post-
processing the forecasts, a mathematical interpretation
of bias correction should first be provided. Since bias
correction aims at adjusting future forecasts towards the
real-time observations, which are unknown at the time of
forecast, bias correction of the forecast would be
mathematically expressed as finding the mode of the
conditional probability distribution of the observation
given the forecast where the system behaviour in the
future is assumed to be similar to that in the past.
Following Equation (8), adjustment of simulations
towards associated observations at time t (xt in Equation 2)
is developed below if the observations and model simula-
tions during the analysis period are joined through a copula
framework:

xt ¼ Max ½ f ðotjytÞ�
f otjytð Þ ¼ f ot; ; ytð Þ

f ytð Þ ¼ c UO ¼ uo;UY ¼ uyt
� �

f ytð Þ f otð Þ
f ytð Þ

¼ c UO ¼ uo;UY ¼ uyt
� �

f otð Þ (9)

Where; f(ot,yt) is the joint PDF of the observation and
simulation at time t, f(.) is the marginal PDF of desired
Hydrol. Process. 28, 104–122 (2014)
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variable, and c(.,.) is the copula PDF of marginal
distributions. As discussed later in section 4, the copula
density function - c(.,.)- is obtained from an analysis period
before the forecast date.
The first two terms of Equation (9) simply refer to the

basic definition of conditional PDF, where the contri-
bution of the copula is reflected in the third term. Since
f(ot|yt) returns the conditional PDF of the observation
given the simulation at time t, the mode of this PDF is
correspondent to the most probable observation at that
time. Therefore, the observation with highest conditional
probability is taken as the adjusted simulation. To build
the conditional PDF of Equation (9) and extract its mode,
we suggest Monte Carlo sampling from the copula
density function in Equation (9), where uyt is computed
for the simulated value at time t. In c UO ¼ uo;UY ¼ uyt

� �
,

UY is fixed at uyt at time twhileUO is to be varied and tested
to return the mode of the conditional PDF. Once a sample
from the copula density function is taken, the right-hand side
of Equation (9) is obtained. Proceeding the Monte Carlo
sampling leads to form the conditional PDF- f(ot|yt) whose
mode is the most probable observation given the simulation
at time t. Figure 5 visualizes the PDF of a copula and the
marginal distribution at U1 = 0.8 (c(U2,U1 = 0.8))
APPLICATION OF POST-PROCESSING METHODS

The post-processing methods employed in this study are
evaluated by hypothetical and real case studies. In the
hypothetical case study, simulations and observations are
sampled from separate parametric distributions, and then
each post-processing method is applied. In the real case
study, the streamflow forecasts for a river basin in southern
Oregon, USA are post-processed using the above methods.

Hypothetical cases

To evaluate the performance of each post-processing
method and explore the relation of g values (Equation (1))
with the effectiveness of each method, 2500 sets of
simulation and observation data series are tested in this
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Figure 5. Schematic of a copula PDF with marginal distribution of U2
shown by the solid line

Copyright © 2012 John Wiley & Sons, Ltd.
section. Test cases are generated independently from each
other. Each case is to describe the dependence between
the simulations and observations by an appropriate
t-copula. Simulations and observations of each case have a
level of dependency and correlation with each other;
nevertheless, the simulations and observations in a single
case are produced totally independent from those of
another case. Gamma and lognormal distributions with
30 different parameter sets are used to randomly sample the
simulations and observations of 2500 cases. Following steps
are taken to form the hypothetical case studies:

1. N = 1, case number
2. Form the data series for the analysis period

a. Sample from a parametric distribution (D1) for 1000
times to build the simulation timeseries. D1 is either
Gamma or Lognormal distribution.

b. Sample from either Gamma or Lognormal distribu-
tion (D2) for 1000 times to build the observation
timeseries.

3. Find a bivariate t-copula to describe the dependence
between the simulations and observations generated in
steps (2-a) and (2-b).

4. Form the data series for the forecast period

a. Sample from a D1 (step 2-a) for 12 times to build the
forecast timeseries. Forecast lead-time is set as 12.

b. Repeat step (4-a) for 50 times to make a forecast
ensemble with 50 traces.

c. Sample from a D2 (step 2-b) for 12 times to build the
observation timeseries.

5. Post-process the forecast ensemble obtained in step (4-a)
by either copula-based or QM method.

6. N=N+1
7. If N≤ 2500, then go to 2. Else, terminate!

In step (4-b), the real-time observations in forecast
mode are sampled from the observation distribution
function to enable a performance evaluation of the post-
processing methods. The list of performance measures
used in this study is presented in Table I. Point-wise
performance measures are utilized in evaluating the
ensemble mean forecast while the probabilistic measures
are used to assess the performance of the forecast
ensembles. Figure 6 shows the results of the QM
technique against the copula-based post-processor. Prob-
ability of success in Figure 6 is the probability that the
employed post-processing method performs successfully
with respect to the associated metric for different values
of the failure index (g). g is computed for the analysis
period of each case, and then cases with a given value of g
are taken out from the pool of 2500 cases. Therefore, for
each metric of interest, cases with successful performance
are counted to compute the probability of success.
Success is defined upon the metric value, that is, if
implementation of the post-processing method improves
Hydrol. Process. 28, 104–122 (2014)
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Figure 6. Probability of success against g for point-wise (MAE and NSE) and probabilistic performance measures (RPSS, a, e, p) in QM and copula-
based post-processing methods. Probability of success is obtained with respect to the associated metric for different values of the failure index
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the metric score towards its perfect value as noted in
Table I, then the method is considered as successful for
that metric. Figure 6 shows that as g increases, the
probability of success strictly declines in the first three
metrics (Mean Absolute Error (MAE), Nash–Sutcliffe
Efficiency (NSE), and Rank Probability Skill Score
(RPSS)) when QM is in use. Given the definition of
g in Equation (1), if the post-processing method
constantly degrades the simulations, g becomes greater
and approaches 1. In such circumstances, the QM method
may not be able to improve the forecasts owing to its
inherent blind-matching nature that is solely dependent on
quantiles. Evidently, the probability of success in the QM
method is dependent on the g value, whereas this is not
the case for the copula-based post-processing method.
The main reason of insensitivity of copula-based method
to the failure index value is its ability to model the joint
behaviour of the simulations and observations unlike the
QM method with inherent blind-matching approach. In
other words, the copula approach is able to perform
effectively even in cases with a large failure index.
Generally, the copula approach is more likely to succeed
than the QMmethod in the first three metrics. Other metrics
in Figure 6 (a, e, and p) are the supportive quantitative
scores derived from the predictive quantile-quantile (QQ)
plot (Laio and Tamea, 2007; Thyer et al., 2009), which
compares the empirical CDF of the probability of observa-
tions (Pt(ot) in Table I) using the forecast ensemble at each
Copyright © 2012 John Wiley & Sons, Ltd.
time t (CDF of the probabilities) against the CDF of a
uniform distribution. For a perfect forecast ensemble, the
empirical CDF of the p-values is consistent with the CDF of
the uniform distribution on the interval [0,1]. The metrics
a and e assess the reliability of forecasts, and p indicates the
resolution (precision, sharpness) of the forecast ensemble.
According to Thyer et al. (2009), as the area between the
empirical CDF of the observations’ p-values and the CDF of
the uniform distribution in the predictive QQ plot becomes
larger, the value of a decreases towards zero. Results
indicate that for g≤ 0.7, the post-processing methods
perform closely, while for large g values, the QM method
is more successful than the copula-based method for the
a measure. The subplot of the e metric illustrates that the
copula method is more effective than the QM method
(regardless of g value) to envelop observations after post-
processing of the forecasts. In other words, fewer observa-
tions fall outside the range of the forecast ensemble after
post-processing by the copula approach. The resolution (p),
also called sharpness, states that adjustment by QM leads to
greater resolution (precision). However, comparison of
sharpness may not be a meaningful approach when the
employed methods do not primarily perform equally in the
a and e metrics. Assuming that precision has lower priority
than reliability, given similar forecast reliabilities, the
method with greater resolution (lower uncertainty) is
preferred; otherwise, the method with higher resolution
does not reveal any superiority.
Hydrol. Process. 28, 104–122 (2014)
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As a brief summary of the hypothetical case results, the
multivariate copula-based post-processor performs con-
siderably better than the QM method in the point-wise
measures. For the RPSS metric among the probabilistic
measures, the copula procedure is again evaluated as a
much better method than QM. The predictive uncertainty
is also more reliable in encompassing observations when
the multivariate copula-based post-processor is in use.
Moreover, unlike the QM method, performance of the
multivariate post-processor is generally insensitive to the
failure index of the analysis period. Using the QM
method, the predictability of the forecast ensemble is not
effectively improved in cases with large g values,
illustrating the drawback of the blind-matching procedure
that corresponds to the same quantiles of simulation and
observation CDFs.

Streamflow forecast in Sprague River basin

The Sprague River basin, with a drainage area of
approximately 4100 km2, is a sub-basin of the Upper
Klamath River basin located in southern Oregon and
northern California, USA (Figure 7). The Sprague River
valley is enclosed by forested mountain ridges and
includes large marshes, meadows, and irrigated pastures.
A large proportion of irrigation water demand is supplied
by river flow, and the rest is pumped from local wells. A
major environmental concern in the Sprague River basin
is the water quality, which directly impacts fish and
wildlife habitat throughout the Upper Klamath basin as
reported by Klamath Basin Ecosystem Foundation
(2007). Some flow conditions interrupt fish passage
through the Sprague River, which necessitates accurate
forecast for better understanding of flow conditions in
coming seasons. The Sprague River is also a major
tributary to Upper Klamath Lake, an important and highly
contested water body used for irrigation water supply,
hydropower generation, and fish habitat.
Figure 7. Sprague River basin, a sub-basin of Upper K

Copyright © 2012 John Wiley & Sons, Ltd.
The bias correction methods discussed in previous
sections are applied to streamflow forecasts of the
Sprague River basin. A distributed parameter hydrologic
model – the U.S. Geological Survey Precipitation-Runoff
Modeling System (PRMS; Leavesley et al., 1983) – is
employed to predict daily river flow of the basin.
Temperature and precipitation data for PRMS are
retrieved from two different sources: the NWS Coopera-
tive Network, and the NRCS Snow Telemetry network of
weather stations. Using the Shuffled Complex Evolution
global search algorithm (Duan et al., 1994), the model
parameter sets are calibrated within the multiple-objective
stepwise calibration Let Us calibrate (LUCA) (Hay and
Umemoto, 2006) framework.

Results

Copula application starts with fitting appropriate
marginal distributions to the variables aimed for the bias
correction procedure. Monthly flow observations and
model simulations of Sprague River basin outflow are
each fitted to eight distributions, including Gamma,
Generalized Extreme Value (GEV), Lognormal, Gaussian,
Generalized Pareto (GP), Weibull, Gumbel, and Exponen-
tial distributions. Several forecast periods starting from
different months (Jan, Feb,Mar) of 2001–2003 are analyzed
for the post-processing application. The forecast lead-
time is fixed at 6 months, and the nine forecast periods are
chosen as Jan–Jun, Feb–Jul, and Mar–Aug for three years
of 2001–2003. The marginal distributions are separately
fitted to historical observations and model simulations in
the analysis periods. The historical period from 1980 to
2000 is used to set the analysis periods associated with
each forecast period. The analysis periods are then taken
as Jan–Jul, Feb–Jul, and Mar–Aug of 1980–2000. The
histograms of monthly averaged PRMS simulations and
river flow observations for the analysis period of Feb–Jul
in 1980–2000, and the fitted distributions are shown in
lamath River Basin in southern OR and northern CA

Hydrol. Process. 28, 104–122 (2014)
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Figure 8. Flow histogram against marginal distribution fitted to monthly averaged PRMS simulations in the analysis period of Feb–Jul, 1980–2000

114 S. MADADGAR, H. MORADKHANI AND D. GAREN
Figures 8 and 9. The parameters of the marginal
distributions are estimated by the Maximum Likelihood
Estimation method. From visual inspection, most
theoretical distributions except Gaussian and Gumbel
are well-fitted to PRMS simulations. It seems hard,
however, to find a suitable distribution to fit flow
observations properly, with only the GEV and Lognormal
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distributions looking suitable. Table II lists the statistics
used for evaluation of the theoretical marginal distribu-
tions. The Kolmogorov–Smirnov (K–S) test is used to
evaluate the appropriateness of the distribution fitted to
the data. Its test statistic (D) measures the maximum
distance of the empirical CDF to the CDF of the reference
distribution:
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ed river flow observations during the analysis period of Feb–Jul, 1980–2000
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Table II. K–S test statistics of fitting different distributions to the simulated and observed flows during different analysis periods
in 1980–2000

Jan–Jun Feb–Jul Mar–Aug

D P-value Hypothesis test D P-value Hypothesis test D P-value Hypothesis test

Simulated flow

Gamma 0.08 0.25 Accept 0.07 0.39 Accept 0.07 0.44 Accept
GEV 0.08 0.25 Accept 0.09 0.22 Accept 0.07 0.40 Accept
Logn 0.11 0.07 Accept 0.10 0.10 Accept 0.08 0.27 Accept
Gaus 0.13 0.01 Reject 0.18 0.03 Reject 0.12 0.03 Reject
GP 0.08 0.22 Accept 0.06 0.64 Accept 0.06 0.64 Accept
Wbl 0.08 0.20 Accept 0.08 0.31 Accept 0.07 0.40 Accept
Gumbel 0.22 2.2E-6 Reject 0.21 5.8E-6 Reject 0.21 3.2E-6 Reject
Exp 0.07 0.47 Accept 0.08 0.29 Accept 0.08 0.25 Accept

Observed flow

Gamma 0.13 0.01 Reject 0.15 0.01 Reject 0.16 0.002 Reject
GEV 0.08 0.32 Accept 0.06 0.24 Accept 0.08 0.25 Accept
Logn 0.10 0.13 Accept 0.14 0.03 Reject 0.13 0.01 Reject
Gaus 0.18 1.3E-3 Reject 0.22 5.2E-5 Reject 0.21 3.4E-6 Reject
GP 0.18 1.6E-4 Reject 0.24 3.2E-5 Reject 0.21 7.1E-6 Reject
Wbl 0.14 9E-3 Reject 0.18 0.006 Reject 0.16 0.001 Reject
Gumbel 0.21 4.4E-6 Reject 0.29 1.4E-6 Reject 0.23 3.7E-7 Reject
Exp 0.24 1.3E-7 Reject 0.27 9.6E-9 Reject 0.28 3.7E-10 Reject
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D ¼ Max F xð Þ � G xð Þj jf g (10)

where F(x) and G(x) are the empirical and reference CDFs,
respectively. The results of K–S test is reported in Table II
along with the p-value at the selected significance level of
a =0.05. The null hypothesis (H0) of the K–S test states that
the data set belongs to the reference distribution.
According to the test statistics in Table II, the Gaussian

and Gumbel distributions are not suitable choices for
simulated flows for any of the three analysis periods,
while the other distributions fit more or less well. On the
contrary, almost none of the distributions except GEV
properly fit the observed flows. These results have been
visually verified in Figures 8 and 9 for the analysis period
of Feb–Jul, 1980–2000. Furthermore, for the Jan–Jun
analysis period, the Lognormal distribution is the second-
most suitable choice for the observed flow. However, the
GEV distribution is the best candidate for the observa-
tions of any analysis period; hence, for the copula
application, the GEV distribution is hereinafter coupled
with the marginal distributions of the simulated flows.
The Elliptical and Archimedean families of copulas

(Table III) are applied to join the marginal distributions of
historical monthly observations and model simulations
during each analysis period (Jan–Jun, Feb–Jul, and
Mar–Aug of 1980–2000). To verify which copula
describes the dependence between the observation and
simulation better than others, various methods may be
applied as the goodness-of-fit (GOF) test. The simplest
method is a visual comparison between the empirical
copula and the theoretical copula. The scatterplot would
follow the line 1:1 if the theoretical copula perfectly fit
the empirical copula. Nevertheless, to compare different
copulas fitted to the same set of data, it is more reliable
to use the GOF test statistics instead of a mere visual
Copyright © 2012 John Wiley & Sons, Ltd.
inspection. A mathematical GOF test for copula functions
may be based on the distance between the empirical
copula and the parametric copula under the null
hypothesis (H0). Genest and Rémillard (2008) implemen-
ted a bootstrapping process to obtain the Cramér-von
Mises (Equation (11)) and K–S statistics as the measures
of distance between the empirical and parametric copulas.
There are some other test statistics analogues to the
Cramér-von Mises and K–S statistics which are based on
Kendall’s transform (Genest et al., 2006; Savu and Trede,
2008) and Rosenblatt’s transform (Rosenblatt, 1952).
Recently, the extended version of the Kullback–Leibler
Information Criterion developed by Diks et al. (2010) has
been applied in copula selection (Weiß, 2011), but the
results showed that the criterion does not perform better
than GOF test statistics in detecting the best copula fitted
to the data. On the other hand, some studies show that
the GOF test statistics based on the empirical copula
outperform the others (Berg, 2009; Genest et al., 2009).
Therefore, this study proceeds with the GOF test statistic
based upon the empirical process with the following
definition for Cramér-von Mises statistic:

Sn ¼
Z
u
ΔCn uð Þ2 dCn uð Þ (11)

where, Sn is Cramér-von Mises statistic, and ΔCn is
expressed as:

ΔCn ¼
ffiffiffi
n

p
Cn � Cθnð Þ (12)

whereCn is the empirical copula with a sample size of n, and
Cθn is the parametric copula estimated for a sample size of n.
Genest et al. (2009) elaborated on a parametric bootstrap
procedure to find the p-value of the test via Monte Carlo
sampling. Since the null hypothesis of the test is that the
Hydrol. Process. 28, 104–122 (2014)



Table III. Summary of bivariate copula functions used for bias correction of river flow forecast

Copula Function Support

Gaussian
C u1; ; u2ð Þ ¼

ZΦ�1 u2ð Þ

�1

ZΦ�1 u1ð Þ

�1

1

2p 1� r2ð Þ
1
2

exp � x12 þ x22 � 2rx1 x2
2 1� r2ð Þ

� �
dx1 dx2

u1 ¼ Φ x1ð Þ ; u2 ¼ Φ x2ð Þ

x1, x22R

r : Linear correlation coefficient

Φ: Standard normal cumulative distribution function

T

C u1; ; u2ð Þ ¼
Ztv�1 u2ð Þ

�1

Ztv�1 u1ð Þ

�1

1

2p 1� p2ð Þ
1
2

exp 1þ x12 þ x22 � 2px1x2
v 1� p2ð Þ

� �� vþ2ð Þ=2
dx1dx2u1 ¼ tv x1ð Þ ; u2 ¼ tv x2ð Þ

x1, x22R

r : Linear correlation coefficient

tn: Cumulative distribution function of t distribution with

n degree of freedom.

Gumbel
C u1; ; u2ð Þ ¼ exp � � lnu1ð Þθ þ � lnu2ð Þθ

h i1=θ� � θ2 [1,1)

θ : Measure of dependency between u1 and u2. Either Pearson’s correlation coefficient or
Kendal’s tau correlation are usually used to estimate θ.

Clayton C u1; ; u2ð Þ ¼ u1�θ þ u2�θ � 1
� ��1=θ θ2 (0,θ)

θ : Similar to Gumbel copula.

Frank
C u1; ; u2ð Þ ¼ � 1

θ ln 1þ e�θ u1�1ð Þ e�θ u2�1ð Þ
e�θ�1

	 
 θ2R

θ : Similar to Gumbel copula.
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parametric copula fits the data (H0 : Cn 2 Cθn ), p-values
greater than the significance level (a) means the null
hypothesis is accepted; otherwise, it is rejected. Therefore,
among a group of copulas, the one with the greatest p-value
(and smallest Sn) is preferred.
As described earlier, three analysis periods having their

specific marginal distributions are tested in this study.
Elliptical and Archimedean copulas are fitted to the
simulations and observations of each analysis period; the
Sn statistic and corresponding p-values of testing the null
hypothesis (H0 :Cn2Cθn) are summarized in Table IV.
Results are the mean value of Cramér-von Mises statistic
(Sn) and corresponding p-value when a given copula is
applied to different combinations of marginal distribu-
tions. As discussed earlier, GEV is selected for observed
flows, and Gamma, GEV, Lognormal, GP, Weibull, and
Exponential distributions are selected for simulated flows.
The p-values are computed using a parametric bootstrap
procedure with N= 1000 replications and a significance
level of a= 0.01. In each case, the copula function with
the smallest Sn (Equation (11)) and largest p-value is
preferred; hence, among the copula functions, the Frank
copula is the best choice for the Jan–Jun and Feb–Jul
periods, whereas the Gumbel copula is the best for the
Mar–Aug period. However, the Clayton copula function
is the worst choice to describe the dependence during any
analysis period.
Using Equation (9), post-processing of each forecast

ensemble is implemented after fitting the appropriate
copula to the univariate marginal distributions of the
Copyright © 2012 John Wiley & Sons, Ltd.
associated analysis period. To evaluate the performance
of the methods, several 6-month hind-cast periods within
three target years (2001, 2002, and 2003) are tested. As
explained earlier, three hind-cast periods are chosen in
each target year: Jan–Jun, Feb–Jul, and Mar–Aug. Note
that post-processing is applied to monthly averaged flows
of each forecast period. Using the same performance
metrics illustrated in Figure 6 and Table I, the
performance of post-processing methods on the stream-
flow forecasts of the Sprague River basin are shown in
Figures 10–12. The QM and copula post-processor are
both used to adjust the hind-casts predicted by PRMS.
The initial states of the model are obtained by running the
PRMS model up to the hind-cast date. To implement the
multivariate copula-based post-processor, the selected
copula function (see Table IV) is applied to all (six)
possible combinations of marginal distributions that are
best fitted to the simulated and observed flows in the
analysis period (see Table II). The curves of copula
application in Figures 10–12 are associated with the
average metric value over all the combinations of
marginal distributions. Prior to the QM application, the
ability of QM to improve forecasts would be predicted
from the value of g estimated for the analysis period. The
failure index for Jan–Jun, Feb–Jul, and Mar–Aug analysis
periods through 1980–2000 is, respectively, found as
0.32, 0.29, and 0.28. Thus, according to Figure 6, it was
not expected that QM would produce encouraging
results for any of the analysis periods. As shown in
Figures 10–12, the QM method is not effective in
Hydrol. Process. 28, 104–122 (2014)



Table IV. Results of GOF test for copula selection in each analysis
period. Values of Cramér-von Mises statistic (Sn) are presented
along with the corresponding p-value in parentheses. Statistics of the

best fitted copulas are bolded

Analysis period
copula function Jan–Jun Feb–Jul Mar–Aug

Gaussian
0.0232 0.0292 0.0550
(0.0664) (0.0255) (0.0005)

T
0.0330 0.0406 0.0653
(0.0055) (0.0025) (0.0005)

Gumbel
0.0242 0.0299 0.0383
(0.0644) (0.0315) (0.0135)

Clayton
0.2173 0.2316 0.3239
(0.0005) (0.0005) (0.0005)

Frank
0.0217 0.0257 0.0521
(0.0794) (0.0415) (0.0025)

Figure 10. Comparing the performance of post-processing methods in adjustin
2003. The forecast period of each
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Copyright © 2012 John Wiley & Sons, Ltd.
improving the forecast ensemble with respect to the point-
wise measures; MAE and NSE show the general failure of
QM in reducing the error of the mean forecast. The
copula post-processor, however, performs better than the
QM method, and it adjusts the forecast ensemble closer to
the observations except for the Mar–Aug forecast period
of 2003. For the Jan–Jun and Feb–Jul forecast periods in
any of the target years, the copula function performs
significantly better than the original forecast and the QM
method. Regarding the RPSS metric, QM generally fails
to improve forecast traces, and it even worsens the quality
of original forecasts in almost all forecast periods. Failure
of the QM method is also predictable according to the g
values and associated results in Figure 6. Copula
application, on the other hand, is consistently the
prominent method for the Jan–Jun and Feb–Jul forecast
periods. As the forecast starting date moves towards
spring, the performance of multivariate post-processing
g the monthly streamflow hind-cast starting from different forecast dates in
forecast ensemble is 6 months

Hydrol. Process. 28, 104–122 (2014)



Figure 11. Comparing the performance of post-processing methods in adjusting the monthly streamflow hind-cast starting from different forecast dates in
2002. The forecast period of each forecast ensemble is 6 months
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gets closer to that of the original forecast; however, it is
still better than the QM results. The reliability metric
derived from a QQ plot, a, shows that QM adjustments
are not reliable compared to original forecasts, while the
proposed copula method performs better than the original
forecasts. Regarding the reliability metric e, none of the
employed methods is constantly effective in improving
forecasts. The value of e reflects the adequacy of the
ensemble spread to encompass all the observations during
the forecast period. Generally, neither QM nor copula-
based methods are able to adjust the original forecasts so
as to embrace all the observations within the ensemble
range. The next metric (p) measures the precision
(sharpness) of the ensemble. The sharpness of the
adjusted ensemble after QM application is higher than
the original forecast ensemble; however, the reliability of
QM corrections is less than the others. The subplots of e
and p indicate that a large sharpness of the forecast
ensemble after copula application is at the expense of
missing some observations to be inside the ensemble
spread, implying overconfidence of the ensemble predic-
tion. The QM method, on the other hand, results in better
Copyright © 2012 John Wiley & Sons, Ltd.
ensemble sharpness (precision) than that of the original
forecast; however, as long as a specific method is steadily
proved to be unreliable, comparing its precision with
other methods is rather trivial and misleading. In other
words, if an ‘inaccurate’ forecast ensemble has high
‘precision’, it cannot be accredited as a preferred forecast.
Therefore, the evaluation of methods with respect to the
sharpness metric should be done by first ensuring a
satisfactory reliability of the methods.
For better understanding of the performance of the

post-processing methods proposed in this study, the
ensemble range and mean forecasts of monthly flow
volumes for the forecast periods in 2002 are shown in
Figure 13. As can be seen, the mean forecast after copula
post-processor is close to the observation for all three
observation periods while after QM application, the mean
forecasts go even further away from the observed
volumes. The MAE and NSE results shown in Figure 11
verify the close distance between the observations and the
mean forecast after copula-based post-processing. More-
over, reliable and precise forecast after copula post-
processor as expected from the probabilistic measures in
Hydrol. Process. 28, 104–122 (2014)



Figure 12. Comparing the performance of post-processing methods in adjusting the monthly streamflow hind-cast starting from different forecast dates in
2001. The forecast period of each forecast ensemble is 6 months
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Figure 11 are reflected in the ensemble ranges. Also, from
Figure 13, it can be seen that the error spread reduces
significantly by the application of copula post-processor with
the exception of few occasions where the observed volume
falls outside the ensemble range after copula post-processing.
The overall conclusion fromFigure 13 is that theQMmethod
is not an effective method to adjust the original forecasts
while the multivariate copula-based post-processor is a more
effective method that can be used operationally.
In general, a well-fitted copula function to the marginal

distribution is a better choice than the QM method
(especially in cases with large g). The results shown in
Figures 10–13 also illustrate that the evaluation of
different methods should not be merely based on the
probabilistic metrics; they may be misleading if not being
compared along with the point-wise measures.
CONCLUSION

An auxiliary index, the so called failure index (g), was
introduced to predict the overall performance of the post-
processing methods before stepping into the forecast
Copyright © 2012 John Wiley & Sons, Ltd.
mode. The failure index applied to the QM technique
reflects the consistency of QM adjustments and corre-
sponding observations; it varies between 0 and 1, with
g = 0 being the perfect-adjustment case. The forecast skill
of QM shows that this statistical bias correction technique
is not always successful in improving initial forecast
trajectories. Testing 2500 hypothetical case studies
indicates that the performance of the QM technique
constantly degrades as g increases. An alternative method
based on the multivariate joint distribution was intro-
duced for post-processing of forecasts. In the hypothetical
case study, the proposed multivariate copula-based post-
processor generally outperformed the QM technique with
regard to forecast verification metrics; and unlike QM, it
did not show specific sensitivity to g. Post-processing of a
real case study was also tested. Using a distributed
parameter hydrologic model, PRMS, several ensembles
of monthly streamflow forecasts of the Sprague River
basin in southern Oregon were generated with a forecast
horizon of 6 months. Generally, the forecast skill of the
post-processed ensembles was effectively improved when
the multivariate post-processor was applied, but it became
Hydrol. Process. 28, 104–122 (2014)



Jan Feb Mar Apr May Jun
0

50

100

150
 d

Feb Mar Apr May Jun Jul
0

50

100

150  e

Mar Apr May Jun Jul Aug
0

50

100

150  f Obs

Org frcst, ESP mean

After QM, ESP mean

After Cop, ESP mean

Jan Feb Mar Apr May Jun
0

50

100

150

 F
lo

w
 V

o
lu

m
e 

[K
af

]

 a

Feb Mar Apr May Jun Jul
0

50

100

150

 F
lo

w
 V

o
lu

m
e 

[K
af

]  b

Mar Apr May Jun Jul Aug
0

50

100

150

 F
lo

w
 V

o
lu

m
e 

[K
af

]  c Org ESP
After QM
After Cop

Figure 13. Comparison of the ensemble range before and after post-processing for three forecast periods in 2002 starting from a) Jan, b) Feb, and c) Mar,
with the solid lines representing the monthly observations. Corresponding ESP mean are shown in subplots d–f
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even worse when QM technique was used. The
performance metrics indicated that QM was the domi-
nated technique; however, weak performance of the QM
technique was predictable from the failure ratio of the
analysis period (g = 0.3). Superiority of a multivariate
copula-based method accounting for the joint behaviour
of forecasts and observations as dependent variables was
evidently demonstrated in the post-processing of hydro-
logical forecasts. Complicated hydrological processes
make it difficult to establish a multivariate function that
directly models the dependent variables; therefore, a
copula approach that combines the CDFs of variables
instead of joining the raw variables showed a successful
contribution in adjusting hydrological forecasts.
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