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ABSTRACT 

 
 

The single greatest uncertainty in seasonal water supply forecasts is the amount of 

precipitation falling after the forecast issue date. There has been a long history of 

attempting to incorporate seasonal climate forecasts into operational water supply 

forecasts. The skill of these precipitation forecasts remains low especially compared to 

highly confident snow-based streamflow forecasts. Early in the season (e.g., September-

December), however, large-scale climate indices are the best available predictors of 

future water supplies. This dissertation suggests practical methods for issuing climate-

based operational streamflow forecasts.  

This study also documents the existence of strong decadal trends in water supply 

forecast skill. Across the Western US, 1 April forecast skill peaked in the 1960-1970s and 

has been on the decline more recently. The high skill period was a very calm period in the 

Western US, with a near absence of extreme (wet or dry) spring precipitation events. In 

contrast, the period after 1980 has had the most variable, persistent, and skewed spring 

and summer streamflows in the modern record. Spring precipitation is also now more 

variable than it has been since at least the 1930s. This rise in spring precipitation 

variability in the Colorado/Rio Grande Basins and the Pacific Northwest is the likely 

cause behind the recent decline in water supply forecast skill. 
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1. INTRODUCTION AND MOTIVATION 
  

Informed decisions about water resources are key to the sustainability of the 

Western US. As the region's population grows, legislation attempts to reduce dependence 

on non-renewable groundwater supplies, and environmental and tribal water rights gain 

recognition, stresses will be placed on already overcommitted surface water supplies. The 

vulnerability of this region to variability in water supplies will be higher in the near 

future than at any other time since major reservoirs were constructed. Therefore, it is 

imperative to manage these supplies with increasing sophistication.  

The scientific community is strongly encouraged to provide useful information to 

decision-makers, which, in turn, may be used to improve natural resource management 

practices. Currently the primary interface between the hydroclimatic scientific 

community and Western US water managers is the operational Water Supply Outlooks 

(WSOs) issued cooperatively by the Natural Resources Conservation Service, the 

National Weather Service River Forecast Centers and other agencies where applicable 

(e.g., the Salt River Project in central Arizona). Some water management agencies are 

required by law to use these forecasts to determine releases from reservoirs for flood 

control and water supply. The question remains: what are the greatest opportunities for 

using state-of-the-art scientific information to improve these operational forecasts? One 

such opportunity is the incorporation of climate information and seasonal climate 

forecasts into the water supply forecasts. 

 Recent years have been an active period in climate research, particularly in the 

United States. Although seasonal climate forecasts have been issued in one form or 
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another since the 1950s, it was not until the mid 1980s that researchers identified and 

diagnosed the impacts of large scale climate phenomenon, such as the El Niño/Southern 

Oscillation (ENSO), on hydroclimatic variability in the Western US. The climate 

community has improved its objective tools for quantifying and forecasting this 

variability with lead times of several months or more. The ability to monitor the ocean, 

atmosphere and land-surface has increased dramatically because of remote sensing and a 

high-density network of Tropical Ocean monitoring buoys. Likewise, General Circulation 

Models (GCMs), numerical descriptions of the earth's climate, are being run on some of 

the world's most powerful computers, at spatial resolutions several orders of magnitude 

higher than those run less than ten years ago. Finally, the study and practice of ensemble 

simulations have flourished, enhancing the ability to make reliable probabilistic forecasts 

of future conditions. 

 Coupled with these technical advances is a heightened societal awareness of the 

potential benefits of using climate forecasts in natural resource management. For 

example, while the impacts of ENSO on streamflow in Arizona have been relatively well 

known since the 1980s, it wasn't until the 1997-98 El Niño that the Salt River Project 

modified their reservoir operations in anticipation of a wet winter based on a climate 

forecast (Pagano et al. 2001). Public awareness of El Niño is very high; a LexisNexis 

general search of major newspapers (1972-2003) for “El Niño” returned over 11,000 

matches, over 70% of which occurred in connection with or after the 1997-98 event.  

There is increased organizational commitment within the National Ocean and 

Atmospheric Administration to facilitate the creation, distribution and use of climate 
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forecasts. For example, many local interdisciplinary Regional Integrated Science 

Assessment (RISA) projects are conducting stakeholder driven research and are engaging 

resource managers about their use of climate forecasts (Hartmann 2001). The 

International Research Institute for Climate Prediction (IRI) is a new entity that uses 

research-grade simulation modeling technology to produce global climate forecasts 

(Barnston et al. 2003). The IRI supports an entire branch devoted to user interaction, 

ranging from hydropower operators in Taiwan to subsistence farmers in rural Africa. The 

recently formed National Weather Service Climate Services Division is devoted to the 

improvement, creation, dissemination and development of applications related to climate 

information and seasonal climate forecasts (NRC 2001). They also have an ambitious 

program to provide a broad array of NWS field office personnel with competence in the 

technical aspects of climate prediction and climate services. While precipitation and 

temperature prediction has been the focus of the climate community, streamflow 

prediction is a natural next step to increasing the societal relevance of climate 

information. 

However, surveys of stakeholders and decision-makers have repeatedly found that 

there are significant barriers to more effective climate forecast use in natural resource 

management (e.g., Pulwarty and Redmond 1997; NRC 1999). Part of this is due to a lack 

of familiarity with the concepts and information involved - such unfamiliarity will 

undoubtedly diminish in time. Part of the barrier is due to concerns with the accuracy of 

the forecasts (addressed by Hartmann et al. 2002a). Lastly, and perhaps most intimidating 

and intractable to researchers are the institutional barriers associated with using forecasts. 
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Many natural resource management issues, particularly those related to water, are too 

complex to consider climate forecasts in isolation. For example, the management of water 

supplies and restoration of salmon stocks in the Pacific Northwest involves at least 20 

different agencies (Pulwarty and Redmond 1997). Determining the precise adjustment of 

management practices in any given year based on a climate forecast would involve a 

prohibitively lengthy deliberative process to ensure that no party perceived it was being 

slighted under the guise of "better management through modern science". 

 This is not to say that water management agencies do not adjust practices in 

anticipation of interannual variability in surface supplies. As mentioned earlier, several 

water management agencies are required by law to use the WSOs in their operations. 

There is a specific and established course of action defined for particular water managers 

depending on the volume of anticipated streamflow (e.g Burke and Stevens 1984). 

However, when faced with both a climate and water supply forecast, it may be difficult 

for a water manager to reconcile them and determine the optimal course of action, or as 

one water manager put it succinctly, "the man with two watches never knows what time it 

is" (Pagano et al. 2001). In all fairness, some may counter that the man with two watches 

has a higher chance of having at least one watch with the correct time, but the 

discrepancy remains a concern for water managers.  

Rather than attempting to have water managers use climate forecasts in an ad hoc 

way, it would be useful for the seasonal climate forecasting community to view the 

WSOs as the "front door" to positively affecting water management practices. It is 

mutually beneficial for all parties to integrate seasonal climate forecasts into the WSOs; 
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the WSOs may improve in accuracy and federal climate research funding agencies would 

be able to fulfill part of their mission involved with the transfer of research products to 

operations. This dissertation addresses this issue of linking climate information and 

operational seasonal water supply outlooks.  

 This dissertation also discusses some of the issues related to long term climate 

variability and trends. The scientific community and water managers are sounding a 

rising chorus of concern about natural and anthropogenically-induced climate change. 

Although long-range climate projections are uncertain, any potential impacts on water 

supply forecasting cannot be discounted. If the climate is changing, hydrologists should 

investigate any vulnerabilities in their water supply forecasting techniques. Climate 

stationarity (i.e., that the future will be like the past) remains a core assumption in the 

current water supply forecasting environment despite increasing evidence that the climate 

may not be stationary even on interannual and decadal timescales.  

This research builds upon the works of previous authors who have outlined the 

theoretical underpinnings of linking climate and water supply forecasts. It also draws 

from past studies of climate variability and change in the Western US. The unique 

contribution of this dissertation is its attention to developing practical methods for 

climate-based streamflow forecasting in an operational setting, and testing these methods 

on a wide variety of basins throughout the Western US. It also highlights the social and 

institutional issues specific to the operational hydrology environment. Finally, this study 

explores previously unexamined aspects of climate change that are particularly relevant 

to water supply forecasting.  
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1.1 Objective 

 

 This study develops and tests practical methods of integrating climate forecasts 

and information into operational water supply forecasts for the Western US. This 

dissertation is a foundation document for developing climatological literacy among 

hydrologists who are interested in issuing very long lead seasonal water supply outlooks. 

It analyzes for forecasters and users the expected skill of these forecasts and develops a 

framework for effectively communicating highly uncertain forecast information. It 

explores and quantifies the role of climate variability in water supply forecast error, a 

first step towards reducing such error.  

 

1.2 Structure of dissertation 

 

Several different chapters within this dissertation use a variety of different 

hydroclimatic datasets. Therefore, all of the data used throughout are described in the 

following section (Chapter 2). Although this study attempts to be general, more in-depth 

analysis is instructive at certain junctures. Therefore, chapter 2.7 also describes the 

selection of 29 special basins used for in-depth analyses. Chapter 3 reviews the various 

climate phenomena and their teleconnections to the Western US. It summarizes past 

studies and fills gaps in the existing scientific literature with new analyses.  

Chapter 4 begins with an overview of the major operational climate and water 

supply forecasts, specifically their format and interpretation. Sections 4.2.2 and 4.3.2 
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describe the evolution of operational-oriented research and compares climate and water 

supply forecasting techniques. This chapter provides the reader with an understanding of 

the current generation of products and a general flavor of how they may evolve in the 

future. Chapter 5 documents past efforts to link climate and water supply forecasts from 

the 1950s to present.  

 Chapter 6 analyzes the baseline performance of the current forecasts and 

identifies the major factors that contribute to their skill. This chapter is necessary in order 

to measure the relative improvement gained by using existing climate information and to 

explore the possible theoretical maximum skill that could be gained under ideal 

conditions.  

Chapter 7 develops an objective system to mimic the behavior of the historical 

official water supply forecasts. This system is used to conduct sensitivity tests to measure 

the relative benefits, at various times of the year, of using climate information in a variety 

of ways.  

Chapter 8 addresses the role of decadal climate variability in water supply 

forecasts. It begins by testing a method to account for decadal climate variability in the 

water supply forecasts (chapter 8.2). Sections 8.4-8.7 recognize and diagnose observed 

long term trends in water supply forecast skill and long term changes in observed 

streamflow variability.  

 Chapter 9 addresses the operational hydrologist, providing practical 

recommendations about the development of a climate-based streamflow forecast. It also 

identifies institutional and communication issues related to these highly uncertain 
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probabilistic forecasts. It offers some alternative forecast formats that water supply 

forecasters may want to test.  

 Chapter 10 summarizes the above results and makes recommendations for future 

research.  

 Most of the material in this dissertation appears in several other publications by 

the author. Chapter 3, the review of past studies of the impacts of climate on the 

hydroclimatology of the Western US is contained in Pagano et al. (1999). Parts of chapter 

3.6 on the impacts of climate warming on water supply forecasting are elaborated on in 

Pagano et al. (2004a). Chapters 5 and 9 on the history of efforts linking climate and water 

supply forecasts, and a discussion of practical aspects of generating and communicating 

operational climate-based streamflow forecasts is primarily based on Pagano and Garen 

(2005a).  Chapter 6, the baseline evaluation of water supply forecasts corresponds to 

Pagano et al. (2004b). Finally, chapter 8 on the observed trends in streamflow variability 

and persistence is derived from Pagano and Garen (2005b).  

 Relevant figures are included at the end of each chapter. Figures are numbered 

sequentially within each chapter. For example, figure 4.3 is the third figure of chapter 

four and can be found at the end of chapter four, before the start of chapter five. Tables 

follow a similar numbering scheme but are embedded within each chapter, near to the 

relevant reference.  
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2. DATA 

 

2.1 Introduction  

 

 This dissertation investigates the relationship between climate and the hydrology 

of the Western US. As such, several hydroclimatic datasets are needed to explore these 

relationships. Five primary variables are studied: snow water equivalent, precipitation, 

climate indices, streamflow, and water supply forecasts. This chapter describes the source 

and aspects of these data. Later chapters describe how these data are aggregated for 

analysis, in their specific context. 

 

2.2 Snow water equivalent 

 

In order to settle a dispute about the effects of logging on snowpack in the Tahoe 

Basin, Dr James Church began the first program of systematic western snow surveys in 

1906. Snow surveys consist of repeated visits to snow courses, fixed locations where the 

snowpack is measured at many locations along a transect. The first few snow courses 

consisted of hundreds of samples along the entire slope of a mountain, although it was 

soon recognized that fewer (5-20) samples at “index” sites would suffice. Inspired by the 

design of a butter corer, the classics professor developed a snow sampler consisting of a 

long metal tube with a ring of cutting teeth on the end. After coring the snow, the tube is 

weighed, its length was measured and its snow water equivalent (SWE) and density 
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calculated. Although the design is somewhat modified from the original, the “Federal 

Sampler” remains the standard snow measuring device at snow courses today.  

SWE is the liquid water equivalent of the snow if the snow were completely 

melted. SWE is more relevant than snow depth to water supplies as the density of snow 

can widely vary, from less than 10% for new snow to as much as 60% for very ripe snow 

(Army Corps of Engineers 1956). At a limited number of inaccessible snow courses, 

“aerial markers” are used to visually measure the depth of snow while flying by in a 

small aircraft. SWE measurements at those sites are estimated using snow water density 

values derived from other nearby manual snow courses.  

Beginning in the late 1970s the NRCS began replacing manual snow courses with 

automated SNOTEL (SNOw TELemetry) sites. SNOTEL sites typically consist of a large 

storage (“rocket”) precipitation gage and a large metal or rubber pillow filled with a non-

freezing liquid. Overlaying snow exerts pressure on the pillow, as measured by an 

electronic transducer. This pressure measurement is then converted into SWE. The snow 

is sampled sub-daily and the data telemetered via a meteorburst system to one of several 

master stations around the Western US. Typically the midnight reading is used to indicate 

the daily value.  

It is not the place of this dissertation to argue the merits of SNOTEL sites versus 

snow courses. Some hydrologists believe that the benefit gained from having daily (as 

opposed to monthly) snow data at SNOTEL sites is somewhat offset by a degradation in 

the quality of the snow measurement caused by sensor drift, diurnal temperature 

fluctuations, and malfunction. In many places, a SNOTEL site replaced an existing 
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snowcourse; several years of overlapping measurements often permitted linear-regression 

back-estimation of the monthly SNOTEL data, if a stable relationship existed between 

the snowcourse and SNOTEL measurements. This study used back-estimated monthly 

SNOTEL data as it existed in the NRCS CDBS database.  

Snow water equivalent data were obtained from the NRCS website at 

ftp://ftp.wcc.nrcs.usda.gov/data/snow/snow_course/. This website contains snow course 

data, aerial marker data, SNOTEL and back-estimated SNOTEL data. Recent 

publications using SNOTEL and snow course data include, among others, Bohr and 

Aguado (2001), Cayan (1996), Clark et al. (2001), Fassnacht et al. (2003), McCabe and 

Dettinger (2002), McCabe and Legates (1995), and Serreze et al. (1999, 2000). Close to 

3000 unique sites have existed in the Western US and Alaska, approximately 2150 of 

which have 20 or more years of available data. Of the sites with 20 or more years of data, 

674 lie within the 35-km buffer around the study basins used herein (as described in 

chapter 7.2).  

A battery of internal consistency and data quality tests was applied to the data 

values, as described in Table 2.1. If a data value failed any of the tests, the entire year’s 

worth of data for this station was removed from the analysis. In total, of the over 135,000 

station-years of data in the Western US and Alaska, about 1.7% failed one or more of the 

tests. There was no obvious spatial pattern to the flags raised. The analysis favored the 

removal of snow course data over SNOTEL data because, for example, no depth 

measurements are taken at most SNOTEL sites and thus there was no opportunity to fail 
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the density test. Additionally, SNOTEL sites are always measured on exactly the first of 

the month and cannot have an internally inconsistent measurement date.  
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Table 2.1. Snow measurement data quality tests. Data must pass all tests to be used in 
the analysis. If any month’s data is flagged, the entire year for that site is disqualified. 
 

Description 
Is the entry not malformed? (i.e., not characters or symbols where 
integers are expected) 
Is the snow depth a contiguous, right justified integer (e.g.,  
not “1 4”)? 
Is the snow density from January-April between 7.7% and 60%? 
In May and June is the snow density between 10% and 60%? 
Is the SWE physically realistic (i.e., positive and not 
extraordinarily large) 
If the data value is identified as a “first of the month” 
measurement, is the actual measurement date of the snow course 
within ~11 days of the first day of that month?  
Other: there is a prevalence of sites whose SWE measurements 

are exactly 99.9. These data are disqualified.   

 

Figure 2.1 shows a time series of the number of valid snow measurements for 

arious months. Few sites existed before the 1930s and the network steadily grew at 30-

0 sites per year from the 1950s to the 1980s. The sharp increase in sites in 1961 is an 

rtifact of the efforts to back-estimate data for snow courses installed after 1961; 

ersonnel in Idaho, Montana and northwest Wyoming were seeking a serially complete 

ataset with which calculate the 1961-90 “normal”. The installation of new sites slowed 

n the 1980s due to shifting priorities and limited financial resources. The sharp drop after 

989 represents the “snow course reduction plan”, a program to discontinue snow courses 

n favor of automated SNOTEL sites. The number of samples measured at each site was 
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also reduced (from ~20-40) to where a typical snow course today involves 5 

measurements.   

This analysis does not include “legacy” snow courses, those discontinued before 

the 1980s. In the early 1980s, forecast activities were collected into a national center in 

Portland (the National Water and Climate Center), as opposed to being state based. One 

of the Center’s first tasks was the development of a centralized digital database. Given 

computer storage and time constraints, the decision was made to digitize only those snow 

courses relevant to water supply forecasting (i.e., those that were still active). Although 

an exact measurement is unavailable, roughly 20% of the monthly snow course records 

remain undigitized in paper copies at the Portland office. Previous generations of 

hydrologists would have had access to these data and would have used them in the water 

supply forecasts issued before 1980.   

Figure 2.1 shows that snow course measurements are taken more often in certain 

months than others. Snow courses are most commonly measured in March and April, less 

so in February and least in January. May measurements are about as frequent as February 

measurements and June data are as common as January data (not shown). SNOTEL sites, 

in contrast, provide daily measurements year-round.  

Figure 2.2 is a map of all of the snow measurement sites in the NRCS network. 

Sites tend to cluster around mountain ranges, away from valley bottoms and low 

elevation regions. Most sites are located in regions of maximum snow accumulation 

versus those with ephemeral snowpack or near the snow line.  
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2.3 Precipitation 

 

 The NWS maintains a network of precipitation and temperature instruments 

measured by cooperative observers (the “CO-OP network”). Over 18 000 stations have 

existed in the United States although the network is comparatively sparse in the Western 

US. These sites are typically located where people live in cities at relatively low 

elevations in valley bottoms. The Western US is actually more “urbanized” than many 

eastern US states; its vast empty landscapes are punctuated with high density population 

centers as opposed to evenly spread continuous stretches of medium density suburban 

communities. Therefore fewer co-op stations tend to be sited in “water supply relevant” 

locations such as headwaters and mountains. With SNOTEL sites located specifically at 

high elevations and wilderness areas, the two networks are complementary (Redmond 

2003).  

 Co-op data were obtained from the National Climatic Data Center (NCDC) 

internet site http://hurricane.ncdc.noaa.gov/pls/plclimprod/somdmain.somdwrapper? 

datasetabbv=TD3220&countryabbv=&GeoRegionabbv=&Forceoutside=. This dataset is 

known as the “TD3220” and it contains daily precipitation depths (from “TD3200”) that 

have been accumulated into monthly values with additional quality control applied. Reek 

et al. (1992) developed a quality control procedure that flagged nearly 400 000 data 

discrepancies. NCDC often estimated data to complete months of data that were partially 

missing. Given the extensive sophisticated spatial, temporal and cross-sensor quality 

controls done by NCDC, no additional quality control was performed for this study.  
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 Figure 2.3 is a time series of the number of precipitation sites within the 35 km 

boundary of the study basins (as described in chapter 7.2). A site is counted if it has at 

least one valid measurement in a calendar year. Roughly, these sites represent about 3-

5% of the entire COOP network, which had 8232 sites in 2002. Few sites existed before 

the 1930s (or NCDC may not have digitized that data). The network steadily expanded 

until its peak in the 1950s and has steadily contracted ever since. Figure 2.4 is a map of 

the COOP network. Sites along coastal and Northern California are not shown in this 

map because these regions were not included in this study. Sites tend to cluster around 

major urban centers; Salt Lake City, Phoenix, Denver and Albuquerque are readily 

evident.  

Precipitation measurements have historically been made year round for all 

months, as opposed to snow measurements which have a historical abundance of 1 April 

measurements over 1 January measurements. It is generally perceived that frozen 

precipitation is less accurately measured than liquid rainfall although Eischeid et al. 

(2000) show that spatially heterogeneous convective summer rainfall is not measured 

well either.  

In the chapter describing the correlation between various climate indices and 

precipitation (Chapter 3) a subset of high quality stations are used. These “Global 

HydroClimatic Data Network” sites have had additional quality control tests applied to 

them (Peterson and Vose 1997). These data are available at http://lwf.ncdc.noaa.gov/cgi-

bin/res40.pl 
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 Finally, spatially distributed climatological average precipitation data are obtained 

from the PRISM system. This hybrid statistical-geographical approach blends 

information about topography and point estimates of precipitation from 1961-1990 to 

derive gridded fields of average annual precipitation at a four-km resolution for the entire 

US (Daly et al. 1994). The project was funded and coordinated by the National Water and 

Climate Center of the NRCS and data are available on the Internet at 

http://www.ftw.nrcs.usda.gov/prism/prism.html 

 

2.4 Climate indices 

 

 Atmospheric behavior is highly complex with many microscale transient weather 

features. However the atmosphere also has several large-scale features that slowly vary 

and persist over many months. Climatologists use global Sea Surface Temperature (SST) 

or atmospheric pressure data sets to describe these long-lived features, and derive time 

series indices to describe the behavior of the climate features from year to year. Seven of 

the most commonly encountered climate indices are used in this study, as listed in Table 

2.2.  

This roster of indices captures what could be considered the mainstream of 

current climate science. The El Niño/Southern Oscillation (SOI, Niño3.4) is a well-

known and well-described phenomenon with no less than 4,500 citations in the scientific 

literature (source: Meteorological and Geoastrophysical Abstracts search on “El Nino”). 

The PNA index has found use for more than 20 years, as has the North Atlantic 
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Oscillation. The Pacific Decadal Oscillation is a relatively new index, although low 

frequency North Pacific indices (such as WP) were identified earlier by Barnston and 

Livezey (1987) and Wallace and Gutzler (1981). The PDO index is somewhat 

controversial in that official climate forecasters do not explicitly consider it in their 

forecasts, citing studies (e.g., Newman et al. 2003) that the PDO is not a “true” 

independent oscillation but rather an artifact of low-frequency variability associated with 

Table 2.2, Climate indices used in this study 
Index Name Period of 

Record 
Describes 

CPCnao1 CPC North Atlantic 
Oscillation 

1950-2002 North Atlantic pressures (Barnston 
and Livezey, 1987) 

PNA1 Pacific North 
American Pattern 
Index 

1950-2002 North Pacific and North America 
pressures (Barnston and Livezey, 
1987) 

SOI1 Southern 
Oscillation Index 

1900-2002 Tropical Pacific pressures at Tahiti 
and Darwin (Walker and Bliss, 
1934) 

WP1 West Pacific 1950-2002 Western Pacific pressures 
(Barnston and Livezey, 1987) 

NAO2 North Atlantic 
Oscillation  

1900-2002 North Atlantic pressures at 
Gibraltar and Stykkisholmur (Jones 
et al. 1997) 

Niño3.41,3 El Niño 3.4 Index 1900-2002 Tropical Pacific Ocean 
temperatures (Ropelewski and 
Halpert, 1987) 

PDO4 Pacific Decadal 
Oscillation Index 

1900-2002 North Pacific Ocean temperatures 
(Mantua et al., 1997) 

1. Source: Climate prediction center 
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd52dg/data/indices/ 

2. Source: East Anglia Climate Research Unit 
http://www.cru.uea.ac.uk/cru/data/nao.htm 

3. Source: Columbia University 
http://ingrid.ldgo.columbia.edu/SOURCES/.Indices/.nino/ 

4. Source: University of Washintgon 
ftp://ftp.atmos.washington.edu/mantua/pnw_impacts/INDICES/PDO.latest 
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El Niño.  Several of these indices contain redundant information, such as Niño3.4 and 

SOI. Table 2.3 documents the cross-correlation among various indices computed over 

their common periods (1900-2002 or 1950-2002).  

 

Table 2.3 Cross correlation coefficient of September-November values of the various 
climate indices used in this study 
 CPC_PNA SOI WP NAO Niño3.4 PDO 
CPC_NAO -0.10 -0.13 -0.07 +0.50** +0.09 -0.05 
PNA  -0.20 +0.14 +0.08 +0.21 +0.29* 
SOI   -0.21 +0.17 -0.78** -0.39** 
WP    -0.07 +0.22 +0.50** 
NAO     -0.11 -0.06 
Niño3.4      +0.48** 
* <5% significance level ** <1% significance level for a student’s T-test 

 

2.5  Streamflow 

 

The United States Geological Survey (USGS) has collected streamflow data at 

almost ten thousand sites across the Western US (west of 104  west longitude). These 

locations are generally critical to water management operations (e.g., inflows to major 

reservoirs, interstate compact points, major diversions).  

Many forecast points are regulated, in that the observed streamflow is 

significantly altered by human activity such as irrigation diversions and reservoir 

releases. Naturalization of streamflow values to remove human influences is a difficult 

task, and even the best efforts cannot completely remove human effects. In reality, there 

are differences between true natural flow and unregulated flow data (which account for a 
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limited number of measured reservoirs and losses). As a result of these complications, 

regulated streamflow locations were avoided in this study (see also Dracup et al. 1985). 

Slack and Landwehr (1992) identified a subset of Hydro-Climatic Data Network 

(HCDN) streamgages as being relatively free of significant human influences and 

therefore appropriate for climate studies. In the continental Western US, there are 481 

such points west of 104  west longitude (figure 2.5). Excluding Alaska, 151 of the 

HCDN gages are currently water supply forecast locations. All of the streamgages chosen 

for this study are HCDN locations. The HCDN gages were identified in 1992, and this 

study assumes that these locations remain unregulated; this is a relatively safe assumption 

considering the diminishing number of new large water projects since the 1970s. Monthly 

streamflow data were obtained from the US Geologic Survey online database 

(http://waterdata.usda.gov/nwis/sw). 

For the 29 study basins (see chapter 2.7), missing observed data are estimated by 

linear regression between the streamflow for the location of interest and data from 

upstream or nearby streamgages. Only 1.1% of the observed streamflow data values 

needed to be estimated, and based on the strength of the correlation coefficients of the 

regression equations, the estimated values are likely to differ less than 5% from the true 

values.  Therefore, the estimation procedure should not significantly affect the following 

analysis. This study assumed that the differences between the forecasts and observations 

were entirely due to forecast error and were in no part due to the quality of the 

observations. The USGS estimate that approximately 95% of their daily discharge 

measurements are within 10% of the true value. 
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Adjusted (unregulated) streamflow data were used only at one location, the 

Tongue River near Dayton, Wyoming. Although an HCDN location, significant 

diversions for irrigation occur during the summer months. The accounted-for diversion 

(Highline Ditch nr Dayton, Wyoming, USGS station number 06297500) amounts to 3-

5% of the seasonal streamflow volume. In the 28 other study basins, the NRCS currently 

calibrates its statistical forecast equations using observed flow data, without any 

adjustments. 

 

2.6 Water supply forecasts 

 

 The contents of and the methodologies to create water supply forecasts are 

described in chapter 4.3. This chapter describes the forecasts archived for this study.  

The 4841 historical forecasts used in this study were drawn from a variety of 

existing sources. The primary source of forecasts was paper versions of the historical 

state “Basin Outlook Reports” and the “Water Supply Outlook for the Western United 

States”, housed at the NRCS National Water and Climate Center, from which the values 

were manually digitized. Forecasts after 1990 were available in electronic versions of the 

same reports.  A secondary source of forecasts was the NRCS Forecast Error Analysis 

Routine (FEAR) electronic database, as used by Shafer and Huddleston (1984). Third, the 

University of Arizona Department of Hydrology maintains an electronic archive of water 

supply forecasts for the Colorado River Basin, as they appeared in NWS publications. 

Finally, paper archives of the publication “Runoff Forecasts”, in the Western 
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Construction News (1947-1954) were used to obtain a very limited number of early 

forecasts in the 1940s and 1950s.  

The NRCS, as an entity, has produced seasonal water supply outlooks since mid 

1930s, although some pre-NRCS forecast activities started in the 1910s and earlier. The 

number of WSO forecast points has increased dramatically over the years. In 1922, a 

limited set of forecasts was available in California and Nevada. After the mid-1930s, 

forecasts increased in number steadily, adding a net 11 forecast locations per year on 

average. Figure 2.6 (top) shows a map of the current roster of Water Supply Outlook 

locations. Before the 1940s, water supply forecasts were almost exclusively issued after 1 

April. In time, the demand for longer lead-time information grew. The NRCS began 

issuing March forecasts in the early 1950s, with the start of February forecasts following 

in the 1960s. January forecasts outside of Arizona began at the NRCS in 1980 (figure 

2.7). According to these trends, the advent of December forecasts almost seems overdue. 

The calibration errors of the NRCS water supply forecast regression equations 

have been used to compute the confidence intervals corresponding to 10%, 30%, 70%, 

and 90% exceedance probabilities associated with the median (50% exceedance 

probability) forecasts. These five probability bounds have appeared in NRCS 

publications since 1989. Before 1986, only median forecasts were published. The 

publications also generally included values for the historical (e.g., 30-year) average 

streamflow for each basin along with the median forecast streamflow as a percent of the 

historical average. For the remainder of this text, “forecast” will refer exclusively to the 

median forecast. In some publications, this value is referred to as the “most probable” 
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forecast, although this is not a statistically rigorous term and is not the preferred 

terminology. 

While the deterministic forecast is the focus of this study, Blanchard (1955) and 

many others since have demonstrated that an optimal decision maker, e.g., an irrigator or 

reservoir operator, gets more value from a probabilistic forecast than a deterministic 

forecast. The author recognizes this issue and believes that the deterministic evaluation 

here is a positive first step towards a fuller probabilistic evaluation. Given that the 

forecasts were developed using statistical tools, and the forecast distribution width was 

proportional to expected forecast skill, a probabilistic evaluation should not paint a 

radically different picture from this analysis unless an improper shape was assumed for 

the forecast distribution. In comparison, simulation models have a well-known tendency 

to produce overconfident forecasts with narrow forecast distributions in part because they 

do not account for the uncertainty due to model calibration and data errors (Barnston et 

al. 2003). Such overconfidence would be penalized in a probabilistic evaluation.  

Many forecast points had multiple target seasons. For example, forecasters 

predicted the April-June, April-July, and April-September flow volume for the Big Lost 

River, Idaho to serve the needs of different users. Before the 1950s, forecasts almost 

exclusively had a target period of April-September, the period that corresponds to the 

irrigation and snowmelt season around most of the Western US. In recent years, to isolate 

the effects of the relatively unpredictable summer monsoon, Upper Colorado Basin 

forecasts have been for April-July. Other locations may begin snowmelt earlier, such as 

the Pecos River in New Mexico, which had a forecast target of March-July. Arizona 
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forecasts were unique in that the target period shrank throughout the season. In January, 

the forecast target was January-May, in February it was February-May and so on until 

April-May. Arizona also has a long history of issuing mid-month forecasts (e.g. issued 

March 15, predicting March 15- May flow) although these forecasts were not evaluated 

in this study.  

 For this study, some forecasts’ target seasons were changed by multiplying a 

forecast for a different target season by the ratio of the long-term average flow for the 

target seasons, as published at the time. For example, multiplying the April-September 

forecast by the April-July long-term average and dividing by the April-September long-

term average creates an estimated April-July forecast. This technique was chosen because 

it preserved the forecast as a percent of average, and forecasters commonly developed a 

forecast for one target period and applied the percent of average to the other periods. In 

some situations in this study, concurrent averages for different periods were not available, 

preventing such a transformation. In these cases, the forecasts were estimated using 

regressions between the observed streamflow values for the various target periods, 

excluding the observed flow for the year the forecast is being estimated. In a very limited 

number of cases, a streamgage had been permanently moved to a nearby location within 

the basin, and these forecasts were adjusted to remove the effect of changing the gage. Of 

the 4841 unique forecast values, 13% were estimated by one of the means just described. 

Almost half of the estimated values were on the Weber, Pecos, and Beaver Rivers 

because of the changing target periods throughout their history. Of these target period 

changes, the Pecos was the most uncertain, with an R2 = 0.952 relationship between 
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March-July and April-September flows. When an estimated value appeared obviously out 

of line with what a forecaster reasonably would have issued, the forecast was listed as 

missing. For example, if a forecast was being estimated using forecasts from a nearby 

basin and there was an unusual sharp gradient in snowpack between the basins, a 

hydrologist would have been aware of this gradient and would have reflected this 

difference in the forecasts.   

In many instances, forecasts were cross-checked for consistency among multiple 

sources. The most common discrepancies were due to keying errors. Discrepancies were 

resolved on a case-by-case basis, almost always favoring the value that appears in a paper 

publication. Based on the frequency of discrepancies discovered (and corrected), the 

author estimates that at least 99.6% of the forecast values used in this study were 

identical to the actual forecast. In the instances where forecasts from the NRCS and NWS 

disagree, the NRCS forecasts were used. Visual inspection of forecast and observation 

time series and maps ensured that any remaining data entry errors were not gross enough 

to affect the following analysis significantly.  

 

2.7 Selection of study basins 

 

All of the selected study basins are HCDN basins and, as such, are free from 

significant human regulation. Human regulation adds an unpredictable element of noise 

to the flow data; forecasts in heavily regulated basins are expected to be less skillful than 

forecasts in unregulated basins. The difference in water supply skill is likely to be 
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inversely proportional to the quality of the naturalized flow data and the extent to which 

most of the regulations are accounted for. Selecting HCDN basins for this study was 

necessary to isolate and emphasize meaningful climatic signals. Operationally, the use of 

poor quality unregulated flow data may obscure this information.  

 To assess possible trends in forecast accuracy, a long history of forecasts is 

necessary, limiting the number of basins eligible for analysis. Generally, the selection of 

basins for this study favored those with a continuous record of forecasts and observations 

from 1955-2002, with streamgages that are still active today. One may assume that basins 

with a long period of record of forecasts also have many years of historical streamflow 

and snowpack data. Data-rich basins have better forecasts than, for example, basins with 

less than 10 years of historical streamflow data, where it is difficult to reliably estimate 

the relationship between snowpack and future streamflow. Although they are very rare, 

forecasts on ungaged basins are the least reliable. 

To ensure relatively complete geographic coverage and a range of basin sizes and 

types, some basins with shorter forecast records were selected (e.g., the Sandy River near 

Marmot, Oregon, 1971-2002). Alaskan forecasts were omitted because of their short 

period of record and compressed forecasting season (i.e., they are only issued in March, 

April, and May). Finally, the number of basins chosen was limited by the resources 

available to digitize the historical forecasts manually. Table 2.4 details the characteristics 

of the 29 forecast points used in this study, and their locations are shown in Figure 7.2.  
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Table 2.4 Study basins and their characteristics. Latitude and longitude are the location 
of the USGS streamgage. Sites with circles by the name are log-transformed (see chapter 
6.3.2). Sites with diamonds have shrinking forecast target seasons.  See also figure 7.2.  
 
 

 USGS SITE NAME USGS 
Code 

Lat 
(North)

Lon 
(West)

Basin 
Area 
(km2) 

Forecast 
Target 
Season 

1 Yellowstone, MT 06191500 45.1 110.8 6,794 Apr-Sep
2 Clarks Fk Yellowstone, MT 06207500 45.0 109.1 2,989 Apr-Sep
3 Tongue nr Dayton, WY 06298000 44.9 107.3 528 Apr-Sep
4 Pecos nr Pecos, NM 08378500 35.7 105.7 490 Mar-Jul
5 East at Almont, CO 09112500 38.7 106.9 749 Apr-Sep
6 Green at Warren Bridge, WY 09188500 43.0 110.1 1,212 Apr-Sep
7 White nr Meeker, CO 09304500 40.0 107.9 1,955 Apr-Sep
8 Animas at Durango, CO 09361500 37.3 107.9 1,792 Apr-Sep
9 Little Colorado, AZ   09384000 34.3 109.4 1,829  Jan-Jun

10 Virgin at Littlefield, AZ   09415000 36.9 113.9 13,183 Apr-Jun
11 San Francisco at Clifton, AZ   09444500 33.1 109.3 7,164  Jan-May
12 Salt nr Roosevelt, AZ   09498500 33.6 110.9 11,153  Jan-May
13 Verde blw Tangle Creek, AZ  09508500 34.1 111.7 15,175  Jan-May
14 Weber nr Oakley, UT 10128500 40.7 111.3 420 Apr-Sep
15 Beaver nr Beaver, UT 10234500 38.3 112.6 236 Apr-Jul
16 West Walker  nr Coleville, CA 10296000 38.4 119.5 469 Apr-Jul
17 Carson nr Ft. Churchill, NV 10312000 39.3 119.3 3,372 Apr-Jul
18 Lamoille Ck nr Lamoille NV 10316500 40.7 115.5 65 Apr-Jul
19 Martin Creek, NV   10329500 41.5 117.4 454 Apr-Jul
20 Dungeness nr Sequim, WA   12048000 48.0 123.1 404 Apr-Sep
21 North Fork Flathead, MT 12355500 48.5 114.1 4,009 Apr-Sep
22 Stehekin at Stehekin, WA 12451000 48.3 120.7 831 Apr-Sep
23 Big Lost at Howell Ranch, ID 13120500 44.0 114.0 1,166 Apr-Sep
24 Bruneau nr Hot Spring, ID   13168500 42.8 115.7 6,812 Mar-Sep
25 Malheur nr Drewsey, OR 13214000 43.8 118.3 2,357 Apr-Sep
26 Salmon at Whitebird,ID 13317000 45.8 116.3 35,094 Apr-Sep
27 Umatilla nr Gibbon, OR 14020000 45.7 118.3 339 Apr-Sep
28 Sandy nr Marmot, OR 14137000 45.4 122.1 681 Apr-Sep
29 Rogue abv Prospect, OR 14328000 42.8 122.5 808 Apr-Sep
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Figure 2.1. Time series of NRCS snow measurements by year and by measurement 
month. 
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Figure 2.2. Map of NRCS snow measurement network.  This map 
includes both snow course and SNOTEL sites as well as sites discontinued 
after 1980.  
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Figure 2.3. Time series of NWS cooperative observer (COOP) precipitation 
sites within 35 km of the study basins described in section 2.7 and shown in 
figure 7.2. A site is counted if it has at least one valid measurement in a 
calendar year. These sites represent approximately 3-5% of the entire 
United States COOP network, which had 8,232 sites in 2002.  
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Figure 2.4. Map of the NWS cooperative observer (COOP) precipitation network. Sites 
along coastal and Northern California are not shown because they are not used in this 
study. The density of sites in that region is typical of western Oregon.  
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Figure 2.5. Map of the USGS Hydroclimatic Data Network for streamflow. These sites 
are a subset of the fuller network of the nearly 10,000 Western US USGS stations. These 
locations are unaffected by significant human regulation and have not experienced major 
land use change.  
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 Figure 2.6 Top: Map of water supply forecast locations in 2003. Bottom, map of study 
basins used in this study. See also figure 7.2. 
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igure 2.7 Time series of available forecasts and observations for the 29 study basins 
escribed in section 2.7. The top most solid line represents the number of observations 
ailable and the bottom four lines represent the forecasts, separated by forecast issue 
onth. Forecasts and observations are serially complete beginning in 1980.  
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3. CLIMATE TELECONNECTIONS AND THE WESTERN US 

3.1 Introduction 

 

This chapter provides an overview of the relationship between large-scale climate 

variability and the hydroclimatology of the Western US. It focuses primarily on the 

surface hydrology (namely precipitation and streamflow) of the region, although 

undoubtedly other climate aspects have the potential to affect water management (such as 

temperature and rain/snow partitioning). However, the intent of this chapter is to develop 

a general understanding of the region's primary teleconnections, and establish a scientific 

foundation for the inclusion of climate forecasts in water supply forecasts. The origins 

and physical descriptions of the various climate phenomena are described by several 

review publications available on El Niño (Delecluse et al. 1998; Graham and White 1988; 

Philander 1992; Rasmusson 1984; Rasmusson and Carpenter 1982), the Pacific Decadal 

Oscillation (Mantua and Hare 2002; Mantua et al. 1997), and the North Atlantic 

Oscillation (Hurrell et al. 2003; Marshall et al. 2002). Further, Pagano et al. (1999, pp 12-

79) includes a comprehensive literature review of teleconnections and hydroclimatic 

impacts in the southwestern US.  

 

3.2 The El Niño/Southern Oscillation  

 

El Niño is the oceanic component of a coupled atmosphere-ocean interaction 

occurring in the tropical Pacific. It is characterized by anomalously warm Sea Surface 
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Temperatures (SSTs) in the eastern Tropical Pacific Ocean. In contrast, anomalously cold 

SSTs are referred to as La Niña (or a “cold event”). These shifts in ocean temperatures 

induce a regional atmospheric response that, in turn, has an impact on global atmospheric 

circulation. The local atmospheric response is referred to as the “Southern Oscillation” 

and the entire phenomenon is collectively known as the El Niño/Southern Oscillation or 

ENSO. For this study, the terms “El Niño” and “warm ENSO events” are used 

interchangeably to indicate warm ocean conditions and the accompanying atmospheric 

response. The phenomenon as a whole is the dominant global climate signal on 

interseasonal and interannual timescales and is the subject of an extensive body of 

research dating back to the early part of this century. Figure 3.1 shows a time series of the 

September-November averaged values of the Niño3.4 Sea Surface Temperature Index. 

High values of this index indicate El Niño/warm ENSO conditions and negative values 

indicate La Niña/cold ENSO conditions.  

Early research indicated that ENSO could be responsible for changes in 

precipitation and temperature patterns in North America (Namias and Cayan 1984; 

Ropelewski and Halpert 1986). Ropelewski and Halpert recognized, among other things, 

the tendency for above normal precipitation in northern Mexico, the Great Basin and 

High Plains (New Mexico and Colorado) in October to March during warm ENSO 

conditions. They noted an opposite signal (dry) in the Pacific Northwest. Andrade and 

Sellers (1988) uncovered a relationship between warm ENSO events and wetter than 

normal fall and spring (but not winter) conditions in Arizona. A similar mid-winter “lull” 

in El Niño impacts has also been found in New Mexico (Lee et al. 2002). El Niño’s 
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correlation with precipitation is regionally strongest over the Salt and Upper Gila River 

basins. Andrade and Sellers attribute this relationship partly to anomalously warm SSTs 

off the coast of California and western Mexico during El Niño causing more and stronger 

west-coast troughs. Warm Californian coastal SSTs also favor the low-level transport of 

moisture into the region. Only during the strongest warm ENSO events do Tropical 

Pacific storms (like Nora and Octave) impact Arizona and/or California. In September, 

the peak month for Tropical Pacific hurricane recurvature (i.e., when storm tracks 

become increasingly northward instead of westward), 3.4 tropical cyclones per year are 

generated, on average, during warm ENSO years versus 2.3 developing during non-

ENSO years (Webb and Betancourt 1992).  

 El Niño’s impact is not limited to the southwest. Redmond and Koch (1991) 

synthesized a series of past works that identify an out-of-phase relationship between the 

climate of the Pacific Northwest and the Southwestern US. During warm El Niño events, 

the wintertime storm track (jet stream) is displaced to the south and intensified, 

increasing the likelihood that storms will affect the Southwestern US (and, in turn, reduce 

the likelihood that they will affect the Pacific Northwest). El Niño favors dry conditions 

throughout the northwest (Cayan et al. 1999; Clark et al. 2001; Hamlet and Lettenmaier 

1999; Kahya and Dracup 1993; Piechota and Dracup 1996; Redmond and Koch 1991; 

Ropelewski and Halpert 1987; Smith and O’Brien 2001) especially in northern Idaho 

(Harsburger et al. 2002), Washington/British Columbia (Bitz and Battisti 1999), and the 

Oregon Cascades (Koch and Fisher 2000). The signal of El Niño in the Upper Colorado 

River Basin is almost non-existent except in the Upper Green and San Juan basins 
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(NRCS 1997; Brandon 1998). If precipitation stations in the Upper Colorado basin with 

poor correlations are removed, a handful of high-elevation stations with modest 

correlations remain (El Niño favors wet, Hidalgo and Dracup 2003). 

 Figure 3.2 shows the correlation of the Niño3.4 index with seasonal precipitation. 

These diagrams say that El Niño favors wet conditions in the fall in Arizona and New 

Mexico and dry conditions north of 42 degrees North latitude except southern Wyoming. 

In winter, El Niño’s wet signal shifts to the west including most of California and central 

Utah. The dry signal also moves to the north, with more of a focus in the Cascades, 

northern Idaho and Montana. During spring, El Niño still favors wet in California, 

Arizona, New Mexico and parts of southern Colorado. There is no signal for dry in the 

Pacific northwest in spring and there is a weak signal for wet in Idaho in the spring. El 

Niño’s signal in summer precipitation is generally weak across most of the country 

except the northern Great Plains. Although there is a weak signal for wet in summer in 

Washington during El Niño, this is generally a dry time of year for that region.  

 Not surprisingly, the impacts of El Niño on snow bear a strong resemblance to its 

impacts on precipitation. El Niño favors snowy conditions in the southwest and less snow 

in the Pacific northwest (Cayan 1996; Clark et al. 2001). La Niña conditions are more 

reliably wet than El Niño conditions are dry in the Northwest  (McCabe and Dettinger 

2002). In the southwest, the correlation between El Niño and snowpack grows from weak 

to strong between January and April (McCabe and Dettinger 2002; Lee et al. 2002). In 

early winter, the Pacific Northwest and Great Basin (Western Colorado to Lake Tahoe) 

tend to be snowier during El Niño (Smith and O’Brien 2001), as do the northern 
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Cascades and Northern Rockies (Idaho, Montana, Northern Wyoming) in mid-winter. 

Smith and O’Brien find that during late winter Northern Utah and Wyoming tend to have 

more snow during both El Niño and La Niña compared to “non-Niño” years whereas just 

the opposite happens in nearby southwest Montana and eastern Idaho (more snow during 

“non-Niño” years). Few of these studies take into account the observed strong trends in 

snowpack mentioned in chapter 3.6. Only when the trend was removed from the 

snowpack data did Lee et al. (2002) detect any relationship between snowpack and El 

Nino in the Upper Rio Grande basin.  

Figure 3.3 shows a map of the correlation of 1 April snowpack with September-

November Niño3.4 index. At least 40 years of valid data must exist for a value to be 

shown. Circles indicate positive correlation, triangles indicate negative, with filled 

symbols having significance at the 0.1% level (|R| > 0.5). El Niño moderately favors light 

snow conditions in the Pacific Northwest and Wyoming, and weakly favors greater snow 

conditions in Arizona and New Mexico.  

The influence of ENSO on streamflow is more robust than its influence on 

precipitation. Streamflow integrates the response of an entire watershed and it can be 

thought of as a low-pass filter for atmospheric variability. Typically, point measurements 

of rainfall possess significant noise because they do not capture the spatial variability of 

precipitation. The Western US rivers with the strongest correlation between seasonal SOI 

and seasonal streamflow are located in Arizona (the Virgin, Salt, Gila and San Pedro) and 

the Pacific Northwest (Cayan and Peterson 1989). Rivers in Arizona have correlation 

coefficients on the order of –0.5 (indicating El Niño implies high flow conditions), 
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whereas the Pacific Northwest rivers have coefficients of 0.5 (El Niño/low flow). 

Redmond and Koch (1991) also investigate streamflow and generally confirm Cayan and 

Peterson’s results. The results differ somewhat in the Southwest; Cayan and Peterson’s 

analysis is seasonally based whereas Redmond and Koch investigated water year 

streamflow totals. El Niño also favors low flow conditions in British Columbia (Hsieh et 

al. 2003).  

Piechota et al. (1997) used principal components analysis and cluster analysis to 

detect groups of streamflow stations that tended to seasonally co-vary. They aggregated 

streamflow in these regions and then composited the streamflow during El Niño years. Of 

the eight coherent regions of variability in the West, four possessed an El Niño signal. 

During El Niño, the Pacific Northwest (all of the Columbia river basin east of the 

Cascade mountains) favors dry in May-September. The Northern Rockies (a small region 

at the intersection of southeast Idaho and North Utah) have high flows for the 10 months 

prior to the El Niño winter (a preceding relationship), and dry soon after from April to 

July. Northern New Mexico tends to have high flows throughout almost all of the water 

year in which the El Niño winter occurs. Finally, southeast Arizona and southwest New 

Mexico have high flows during March through June. The results of this study should not 

leave the reader with the impression that the above regions are the only regions where El 

Niño has an impact; the dataset used by Piechota et al. had sparse coverage. For example, 

Arizona, Nevada and Wyoming were collectively represented by five streamgages, 

whereas California, alone, contained almost 20 gages. The authors noted a shift in the 
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way Western US rivers responded to ENSO in 1976, an allusion to decadal variability in 

the Pacific (this topic will receive more attention in chapter 3.3).  

 

3.3 The Pacific Decadal Oscillation 

 

 A dominant pattern of Pacific climate variability is the Pacific Decadal 

Oscillation (PDO). While ENSO describes tropical Pacific variability on timescales of 1-

5 years, the PDO describes extratropical Pacific Ocean variability on time scales of 20-30 

years. Paleoclimate reconstructions suggest a second periodicity of around 70 years. The 

"warm" phase of the PDO is associated with warm ocean temperatures in the eastern 

equatorial Pacific and along the west coast of North America. During this phase, cool 

temperatures dominate the central and western region of the Northern Pacific Ocean. The 

"cool" phase of the PDO indicates the opposite. The PDO "index" is defined (by Mantua 

et al. 1997) as the leading principal component of North Pacific monthly sea surface 

temperature variability (poleward of 20 N) (see figure 3.4).  

The general sentiment of researchers is that cool PDO prevailed from 1890-1924 

and 1947-1976 and warm PDO occurred in 1925-46 and 1977 to the mid 1990s. There is 

controversy about the exact date of the "regime shifts", and there is particular uncertainty 

about whether a shift from warm PDO to cold PDO occurred in recent years. Although 

the causes of PDO variability are not well understood, and the PDO index can exhibit 

wild short term swings (e.g., 1989-91 and 1957-59), the phenomenon exhibits remarkable 

multi-year persistence. The autocorrelation of the September-November PDO index is 



 

51

significant (positive) at the 95% level out to 12 months and it remains positive for 7 

years. In comparison, the autocorrelation of September-November Niño3.4 is significant 

at 10 months, but is only positive to 1 year. Therefore, simply observing the current state 

of the PDO can assist in forecasting climate on seasonal and possibly intra-annual 

timescales.  

 The impacts of PDO on surface precipitation and temperature in the Northern 

Hemisphere are generally similar but not identical to those of ENSO. Warm PDO brings 

dry winter conditions across the northern tier of states from the Pacific Northwest and 

Southwestern Canada to the Great Lakes. It also brings wet conditions to Arizona, New 

Mexico, Colorado, Oklahoma, Kansas and Mexico. The reverse is true of the cold PDO 

phase (Mantua and Hare 2002).  

 Liles (1999, see also Maxwell and Holbrook [2002] for Arizona where similar if 

weaker results were found) studied the impacts of PDO on annual precipitation totals for 

New Mexico climate divisions, and the seasonal impacts on Albuquerque precipitation. 

He performed an analysis on PDO epochs (1944-76 vs 1977-97) and compared it to 

categorization of individual PDO years into strong positive, weak positive, neutral, weak 

negative or strong negative years. For annual statewide precipitation totals, the average of 

strong negative (cool) PDO years was only 62% of the average of strong positive (warm) 

years. During negative PDO years, dry years outnumber wet years roughly five to one. 

"Wet" and "Dry" was defined as precipitation departures from the long-term average of 

more than 10%. The signal is strongest in the southwest part of New Mexico and during 
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transition seasons (Mar-May, Sept-Nov). He reports no signal during winter. Maxwell 

and Holbrook (2002) reported no signal during summer.  

 The PDO has a modulating effect on El Niño’s signal in Alaska and many other 

places (Koch and Fisher 2000; Gutzler et al., 2002; McCabe and Dettinger 1999), 

enhancing it during certain PDO/ENSO states, and deconstructively interfering in other 

years (Papineau 2001). The net effect of PDO on streamflow in Southeast Alaska is that 

the overall volumes are not changed, but warm PDO yielded earlier streamflow and cool 

PDO brought more streamflow later in the season (Neal et al. 2002).  

Dettinger et al. (2000) found enhanced water year (October-September) 

streamflow in the subtropics and diminished streamflow in the midlatitudes during warm 

PDO periods. According to Mantua et al. (1997), annual water year discharge in the 

Skeena, Fraser and Columbia Rivers (in the Pacific Northwest) are diminished on 

average 8%, 8% and 14% during warm PDO years compared to cool PDO years. In 

several works, Hare (e.g., Hare and Mantua 2000) has generally confirmed this result in 

the Columbia River Basin, Washington State and British Columbia using hydro-

climatological, and ecological data.  

As with figures 3.2-3.3, figures 3.5-3.6 show the correlation of PDO with 

precipitation and snowpack, respectively. The overall strength and spatial pattern of 

PDO’s impacts are very similar to El Niño’s impacts during fall and winter. PDO has a 

relatively stronger impact in New Mexico in spring, with almost no signal in Arizona or 

California during this period. PDO also has no impact anywhere in the summertime 

precipitation. Interestingly, even though the correlations of PDO with precipitation are 
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slightly weaker than El Niño’s correlation with precipitation, the correlation of PDO with 

snow is stronger than that of El Niño, especially in the Pacific Northwest. This suggests 

that PDO may also be affecting snow through its influence on temperatures.  

 

3.4 Atlantic variability  

 

The North Atlantic Oscillation (NAO) concerns interactions between the ocean 

and atmosphere in the North Atlantic region, modulating the strength and position of the 

subtropical high and polar low air masses (Wallace and Gutzler 1981).  It is often 

measured by the pressure difference between Iceland and Gibraltar and this difference is 

strongest in winter (see figure 3.7). "Low" NAO years favor the passage of winter frontal 

cyclones over Southern Europe. In "High" NAO years, these storm tracks are pushed 

farther to the north, causing Southern Europe to dry out and wettening northern Europe. 

NAO also influences the climate of the eastern US (e.g., Joyce 2002). Much as ENSO 

and PDO impact the same regions but operate on different timescales, NAO and Multi-

decadal Atlantic variability impact the Atlantic sector similarly but on different 

timescales. Indeed, Enfield and Mestas-Nuñez (1999) correlated indices of Multi-decadal 

Atlantic variability with North American seasonal climate and detected a strong signal in 

the Southwest US, specifically Arizona.  Much of this correlation can be attributed to the 

overlap of decadal variability "epochs" in the Atlantic (1860-1880, 1905-1925, 1940-

1960, 1970-1990) with epochs in the North Pacific. For long timescales, therefore, PDO 

captures much of the Atlantic decadal variability. On month-to-month timescales, the 
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NAO index suffers from a lack of temporal persistence. Therefore, as an independent 

predictor, is not expected to have significant predictive ability with respect to Western 

US seasonal water supplies.  

 As with figures 3.2-3.3, figures 3.8-3.9 show the correlation of NAO with 

precipitation and snowpack respectively. In the fall, high NAO seems to weakly favor dry 

conditions in Arizona/western New Mexico and wet conditions in California, the 

Cascades and northern Idaho. The correlations are very weak, almost all falling in the 

range between –0.2, +0.2. In winter, spring and summer there is effectively no signal for 

NAO in Western US precipitation. Snowpack seems to have a uniform positive 

correlation with NAO especially in the Upper Colorado River basin although the 

correlations are typically less than 0.3. As with PDO, to rectify the maps of NAO’s 

impacts on precipitation and snowpack, one may need to also consider temperature 

effects.  

 

3.5 The Pacific North American pattern 

 

The Pacific North American (PNA) pattern is one of the most prominent modes of 

low-frequency climate variability in Northern Hemisphere winter (Wallace and Gutzler 

1981). It is measured by pressure variations over the Northern Hemisphere (see figure 

3.10). High values indicate a deeper than normal Aleutian low, increased ridging over the 

Western US and low pressures in the eastern US. Low values indicate the opposite. PNA 

is highly correlated with Pacific Northwest temperatures but has weaker correlations with 
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precipitation (Leathers et al. 1991). Woodhouse (1997, following Keables 1992) 

developed a modified PNA index to maximize its precipitation signal in the southwest 

US. El Niño and this modified PNA together explained over 63 percent of the variability 

of the number of cold-season rainy days in the Sonoran Desert (Arizona).  

Redmond and Koch (1991) discuss the impact of PNA on the Western US, 

finding that the relationship is not as clear as with El Niño. This is probably because the 

PNA index lacks the temporal autocorrelation of ENSO indices, occasionally "flipping" 

mid-season. While it may describe coincident climate variability well, it may have 

limited value as a predictive index. The Colorado Basin River Forecast Center has 

studied the PNA index as a candidate variable in their seasonal streamflow forecasting 

regression equations, with modest success (Brent Taylor, CBRFC, personal 

communication, October 1999). When PNA and ENSO are considered together, there 

appears to be a non-linear effect enhancing the usefulness of PNA as a forecasting 

variable (i.e., when PNA is high and SOI is low, streamflow is dramatically enhanced, 

but the variables do not interact otherwise). Finally, the short time series of upper-air 

measurements limits the amount of historical research that can be done on PNA’s 

impacts.  

As with figures 3.2-3.3, figures 3.11-3.12 show the correlation of PNA with 

precipitation and snowpack respectively. Positive PNA yields dry conditions in the 

southwest in fall and dry conditions in the Pacific Northwest in winter. In spring, high 

PNA favors wet in the southwest outside of Arizona. In general, except for fall, the 

PNA’s predictive signal in precipitation is spatially incoherent and weak.  
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3.6 Other climate phenomena and trends 

 

 Although this study has attempted to blend the state of the art in climate 

understanding into streamflow forecasting, there are many climate phenomenon that have 

not been considered for a variety of reasons. This chapter addresses some of the better-

known aspects of climate variability that a hydrologist may encounter. Climate research 

is a rapidly expanding and evolving field and its breadth should not be underestimated. 

The Climate Explorer (http://climexp.knmi.nl/), an interactive Internet-based analysis 

tool for hydroclimatic research, offers no less than 70 major climate indices including the 

Madden Julian Oscillation (Madden and Julian 1994), Quasi-Biennial Oscillation 

(Naujokat 1986), and the Arctic Oscillation (Thompson and Wallace 1998). This does not 

consider the 12 ocean temperature climate indices of Drosdowsky and Chambers (1998), 

or the recent swell of interest in Indian Ocean temperature variability. All of these 

climate phenomena are scientifically sound although most of them are not relevant to 

western streamflow prediction.  

 Few climate prediction techniques are as controversial as sunspots and solar 

cycles. Prior to the 1970s, solar variations were the most common natural explanation for 

year-to-year variations in climate and hydrology. Streamflow of certain rivers could be 

correlated with various sunspot cycles, such as the 11-year cycle, or even short-term (2-3 

week) episodes (e.g., Landscheidt 2000a). The behavior of every major climate index has 

been linked to solar activity (Landscheidt 2000b, 2001a,b).  
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Coincidentally, the earliest attempts at climate forecasting at the turn of the 

century were born out of attempts to link sunspot cycles with the periodicities found in 

climate time series, such as Indian monsoon rainfall (the variability of which is now 

known to be influenced by ENSO). For example, the methods used to produce the 

seasonal forecasts of the "Farmer's Almanac" are a combination of solar, astronomical 

and numerology techniques. However, mainstream seasonal forecasters generally view 

solar-climate connections as "black science" and frown upon their usage. For example, in 

the 1980s, an internal memorandum at the Climate Prediction Center strongly 

discouraged forecasting and research personnel from participating in solar-climate 

symposia (Tony Barnston, International Research Institute, personal communication, 24 

October 2001). The predictive skill of sunspot-climate relationships is very low, and the 

relationships are unstable in space and time (Korzun 1978; Allan et al. 1996). For these 

reasons, solar cycles will not be considered in this study.   

Hydrologists are keenly interested in the expected impacts of long-term climate 

change on Western US water supplies. Observed long-term trends in streamflow and 

precipitation are discussed further in chapters 8.4-8.7, and studies suggest that there are 

significant trends in Western US snowpack. Northern Hemisphere snow cover is on the 

decline (Brown 2000). Temperatures throughout the Pacific Northwest have risen, on 

average 1.5 deg F/century since 1920 causing snowpack in the Cascades to decline 

almost 50% since the 1950s and as much as 30% in Idaho (Mote 2003a,b). These trends 

are most pronounced at moderate to low elevations, especially below 1600 meters (5250 

feet) elevation. Preliminary analysis by the author (not shown) suggests that Mote’s 
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snowpack declines also extend into Montana and Wyoming (the entire Western US north 

of 42 deg North). If the analysis were extended into the 1930s, Mote would have found 

that the snowpack time series in this region is convex (“n”) shaped, low in the 1930s-

1940s, high in the 1950s-1970s and low afterwards. In Colorado and Utah, there were not 

strong trends in snowpack from the 1930s-1960s. The late 1970s and early 1980s were 

very high snow years, followed by extended stretches of dry in the late 1980s and late 

1990s. It is difficult to know if such variability constitutes a trend (see also Taylor et al 

2004).  

 Nonetheless, Mote (2005) recently significantly expanded his previous analysis of 

snowpack trends. Using observed precipitation and temperature data forced into a land 

surface hydrology model, the snowpack record was estimated for all regions of the 

Western US from 1915-1997. The correspondence between the observed and simulated 

snowpack trends was very strong, reproducing the spatial extent and seasonality of the 

trends. This analysis also decomposed the snowpack trends into that forced by 

precipitation variability and temperature variability. While precipitation is the controlling 

factor for snow variability for much of the interior west, temperature is becoming 

increasingly dominant, particularly in transitional rain/snow regions such as the Cascade 

mountains in Oregon, Washington and northern California.  

The Climate Prediction Center does account for some low frequency variability 

through its use of Optimal Climate Normals (see chapter 4.2.2). No similar activity exits 

at seasonal streamflow forecasting centers. Eventually, hydrologists will have to address 

the question of whether snow-based streamflow forecasting equations will still be 
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relevant in a significantly warmer climate or if these strong trends in snow are interfering 

with the forecasts in other ways.   
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Figure 3.1. Time series of the Niño3.4 Index of equatorial Pacific ocean 
temperatures, averaged over September-November. High values indicate El Niño 
conditions and low values indicate La Niña.  
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Figure 3.2. Correlation of precipitation with the Niño3.4 index. Each panel corresponds 
to a 3-month season of precipitation, correlated with the preceeding 3-month average of 
the Niño3.4 index, as follows: Top left (fall precipitation), top right (winter preciptation), 
lower left (spring precipitation), lower right (summer precipitation). Positive correlation 
(black dots) mean El Niño favors wet conditions whereas negative correlation (hollow 
dots) mean El Niño favors dry. The size of the dot is proportional to the strength of the 
correlation. Reference dots are provided along the bottom for R = -0.8, -0.5, -0.2, +0.2, 
+0.5 and +0.8.   
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Figure 3.3. Correlation of 1 April snowpack and the September-November Niño3.4 
index. At least 40 years of valid data must exist for a value to be shown. Circles indicate 
positive correlation, triangles indicate negative correlation, with filled symbols having 
significance at the 0.1% level (R > 0.5). Symbol diameter is linearlly proportional to the 
srength of the correlation. El Niño moderately favors dry conditions in the Pacific 
Northwest and Wyoming, and weakly favors wet conditions in Arizona. 
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Figure 3.4. Time series of the Pacific Decadal Oscillation index averaged over 
September-November.  
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Figure 3.5. Correlation of seasonal precipitation with the PDO index. Compare with 
figure 3.2.  
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Figure 3.6. Correlation of 1 April snowpack and the September-November 
Pacific Decadal Oscillation Index. Compare with figure 3.3. Positive PDO 
moderately favors dry conditions in the Pacific Northwest and Wyoming, and 
weakly favors wet conditions in New Mexico. 
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Figure 3.7. Time series of the North Atlantic Oscillation (Gibraltar 
Stykkisholmur) index, averaged over September-November.  
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Figure 3.8. Correlation of precipitation with the NAO index. Compare with figure 3.2. 
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Figure 3.9. Correlation of 1 April snowpack and the September-November North 
Atlantic Oscillation. Compare with figure 3.3. Positive NAO weakly favors wet 
conditions throughout the Western US.  
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Figure 3.10. Time series of the Pacific North American index, averaged over 
September-November.  
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Figure 3.11. Correlation of precipitation with the PNA index. Compare with figure 3.2. 
The PNA index is not available in June-July. The overall predictive signal of PNA on 
precipitation is scattered and heterogeneous except in the fall.  
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Figure 3.12. Correlation of 1 April snowpack and the September-November 
Pacific North American Index. Compare with figure 3.3. Positive PNA weakly 
favors wet conditions throughout the Western US.  
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4. EXISTING SEASONAL FORECASTS  

4.1 Introduction 
 

 The previous chapter described the scientific link between several large scale 

climate features and Western US hydroclimatology. Along with other tools, 

climatologists use these linkages to create seasonal climate forecasts. A variety of such 

forecasts exist, produced by an equally varied number of agencies. This chapter describes 

the content, format and methods of production of the official climate and streamflow 

forecasts for the Western US. Descriptions of the operational environment are rare if 

existent at all in the peer-reviewed scientific literature; the forecast process is poorly 

documented as it is often passed down by oral tradition (Hartmann et al. 2002b). 

However, if one hopes to positively integrate scientific advancements into the operational 

environment, one must understand the forecaster’s motivations, objectives, limitations 

and culture. This chapter is a key element in understanding the current generation of 

products as well as anticipating how they may evolve in the future. The water supply 

forecast information presented here is admittedly focused on the NRCS process, although 

other agencies are mentioned when applicable. Hartmann et al. (1999) provide a thorough 

review of all hydroclimatic forecast products applicable to the Southwestern US, 

including many not addressed here. 
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4.2 Climate forecasts 

4.2.1 Current products 

 

 The current format of forecasts from the Climate Prediction Center (CPC) 

includes US maps of probability anomalies for the next single month and the thirteen 

consecutive three-month segments (eg. DJF, JFM, FMA) of average temperature and 

total precipitation (figure 4.1). These maps can be found on the Internet at 

http://www.cpc.ncep.noaa.gov/products/predictions/90day/. The contours of the map 

indicate the probability of a region experiencing conditions which would fall into the 

“above normal”, “normal” and “below normal” terciles of the historical record 1961-1990 

(or 1971-2000 for forecasts after May 2001). In the absence of contours ("climatology" or 

“equal chances”), CPC indicates that there is an equal (33.3%) chance of the given 

forecast period falling into each of the terciles. A sophisticated user acting within a risk-

based decision framework may choose to interpret CPC’s “climatology” forecast 

differently, as “total uncertainty” instead of an equiprobable tercile forecast.   

The presence of contours indicates a shift of probabilities from one end of the 

distribution into the opposite extreme. For example, a contour signifying “B 40” indicates 

a 40% chance of falling in the below normal category, a 33% chance of near-normal and 

a 27% chance of above normal. This is true except for anomalies indicating very large 

probability shifts, in which case the remaining probability is removed from the middle 

(near-normal) tercile and 3.3% always remains in the least likely category. 
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Although forecasters currently have the option of issuing an increased probability 

of near-normal temperatures with a diminished probability of not-normal temperatures, 

they rarely exercise this option. Under the current format, a forecast for an increased 

chance of near-normal precipitation has never been issued, primarily because a lack of 

demonstrated skill in being able to forecast “near normal” conditions (Van den Dool and 

Toth 1991).  

Although it is not yet a popular product among general users, CPC also issues 

"Probability of Exceedance" (POE) forecasts (Barnston et al. 2000). For each of the 90-

day forecasts associated with the official seasonal climate outlook mentioned above, 

point forecasts are given for 102 "mega-climate divisions" around the US. These point 

forecasts describe the shift in the entire distribution relative to climatology (as opposed to 

probability shifts at the tercile boundaries). Although the cumbersome and busy format of 

the POE forecasts has intimidated uninitiated users, their format represents the maximum 

information content possible in a probabilistic forecast. The POE forecast is an 

indispensable product to highly sophisticated users who use the forecasts quantitatively. 

CPC also supports a POE forecast “downscaled” to individual cities (e.g., Phoenix, AZ 

airport).  

Similar to CPC, the International Research Institute (IRI) issues probability 

anomaly forecasts for 3-month overlapping periods for temperature and precipitation. 

These forecasts can be obtained at http://iri.columbia.edu/climate/forecast/net_asmt/. The 

most significant differences between CPC and IRI forecasts are spatial (IRI’s domain is 

global whereas CPC’s is the United States) and methodological (CPC relies more heavily 
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on statistical tools whereas IRI relies almost exclusively on simulation models). IRI also 

does not have a fixed rule on how the tercile probabilities are distributed. For example, 

although they would have little reason to do so, nothing prevents IRI from issuing a 

bimodal forecast of 40% chance of dry, 20% chance of near-normal and 40% chance of 

wet. IRI issues forecasts at lead times up to 4 months ahead (e.g., a forecast issued in 

October with a target period of February-April), compared to CPC’s 12 month lead time. 

IRI explicitly “pixelates” its forecast map into 2x2 degree latitude and longitude grid 

cells whereas CPC allows smooth contours of an unspecified spatial resolution. Finally, 

IRI produces an additional “Extreme” forecast map which focuses on significant shifts in 

the tails of the forecast distribution. Here "Extreme" means in the lower or upper 15 

percent of the climatological distribution. As discussed later, IRI participates in the 

development of CPC’s forecasts and, as such, IRI tries to match its forecasts over the 

United States with CPC’s depiction.  

 

4.2.2 Operations research and evolution of forecast techniques 

  

The history of climate research and forecasting tools is well documented by many 

review articles, including but not limited to Barnston et al. (1994, 1999, 2000), Epstein 

(1988), Gilman (1982, 1985), Goddard et al. (2000), Hartmann et al. (1999, 2002b), 

Mason et al. (1996, 1999), Namias (1968, 1985a), Nicholls (1980), and Wagner (1989).  

This chapter provides a broad summary of these publications, traces various paths 

of progress in climate forecasting history, discusses changes within forecasting agencies 



 

76

and identifies likely advances in the future.  Naturally the brevity of this chapter prevents 

an in-depth analysis and, as such, many events are omitted.  

 Climate forecasts of some form or another have existed for a very long time, 

including “almanac” style forecasts based on astronomical or solar cycles (see also 

Meinke and Stone 2003). Coincidentally, some of the earlier attempts at climate 

forecasting at the turn of the previous century were born out of attempts to link sunspot 

cycles with the periodicities found in climate time series, such as Indian monsoon rainfall 

(the variability of which is now known to be influenced by El Niño, see also chapter 3.6). 

 In the 1920s and 1930s researchers described the movement of large-scale 

atmospheric features in the context of fluid dynamics. Given an initial state, one might be 

able to describe how centers of action in the atmosphere will evolve and affect weather 

systems. The identification of slowly-evolving systems in the mid-troposphere provided a 

physical basis for the notion of “teleconnections”, action at a distance in the atmosphere. 

By 1941, the theoretical basis was sound enough for the Weather Bureau to begin issuing 

5-day operational forecasts, primarily for military purposes. These forecasters were 

experts in the art of reading atmospheric pressure maps, understanding the physical 

processes at work and visualizing the future trajectories of features. Namias extended 

these ideas to begin producing experimental and routine 30-day forecasts in the mid-

1940s. Official forecasts, issued to the public, began in 1953.  

 In time, the appreciation for the influence of ocean temperature patterns on 

seasonal climate grew. Features such as El Niño, the Southern Oscillation and the Pacific 

North American (PNA) pattern were recognized and described. By the late 1960s and 
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certainly by the early 1980s, researchers and the operational community were aware of 

the impacts of these sometimes-remote phenomena on the United States (see chapters 3.2 

and 3.5). Namias also sketched out two other phenomena important to seasonal 

forecasting, extratropical sea surface temperature anomalies (Namias 1965) and 

antecedent land surface conditions such as soil moisture or snow (Namias 1962, 1985b). 

All of these research areas are still active today.  

 In terms of forecasting tools, analogue and persistence forecasting techniques are 

among the oldest modern tools in use. The technique involves looking to the past to find 

one or more months or seasons that resemble the most recent month or season. The 

prediction is then similar to the climate that was observed in the periods following the 

chosen analogues. For example, Barnett and Preisendorfer (1978) used principal 

components analysis on ocean temperatures and atmospheric pressures to define the 

primary modes of variability (the “climate vector”). The current climate vector is then 

compared to past climate states to determine the year in the past that most resembles the 

present (e.g., January-March 2003 most resembles January-March 1973). The future 

should then resemble the season after the selected analogue (e.g., April-June 2003 should 

resemble April-June 1973). A recent advance is the use of “constructed” versus “natural” 

analogues. A natural analogue forecast map is derived from a single year (e.g., 1973) 

whereas a constructed analogue is pieced together from different years for different 

locations (e.g., 1975 in Chicago, 1983 in Boston, 1943 in Denver). In comparison to 

analogue forecasting, persistence forecasting involves the likelihood that, for example, a 

wet winter is followed by a wet spring. Along with subjective pressure height chart 
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analysis, these techniques were most in use in operational climate forecasting from the 

mid-1960s to late-1980s.  

Analogue selection techniques are not without their critics. Improper use of the 

approach involves developing, perhaps subliminally, a pre-conceived notion of what the 

forecast should be. Next the climatologist suffering from “confirmation bias” selects 

similarity criteria to produce an analogue that matches the pre-conceived forecast while 

ignoring other information that indicates the inappropriateness of that analogue. This 

climatologist may steer the analogue selection criteria towards extreme years to draw 

attention to the forecast (e.g., 1966 may be emphasized because it had the largest snow 

storm on record, even if it is only the 4th best analogue behind several uninteresting 

years).  

Another pitfall involves the selection of physically irrelevant similarity criteria. 

For example, while floods have happened in Arizona in 1983 and 1993, one should be 

reluctant to tell users that they can wait until 2003 for the next flood because flood years 

end in “3”. Although overt numerology has no place in climatology, subtler examples of 

correlation without physical mechanism abound (e.g., solar cycles). Consistent and 

objective selection criteria conceptually associated with physical mechanisms are 

generally favored over subjective, ad hoc techniques divorced from a causal mechanism. 

Finally, as the past never exactly repeats itself, deterministic analogue forecasting can be 

misleading to the user; statements such as “We’re looking at a repeat of 1988” are bound 

not to verify (Nicholls 1999). Several authors, including Mark Twain, may have once 

said, “History does not repeat itself, at best it sometimes rhymes.”  
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Climate forecasters recognized this flaw relatively early and moved away from 

deterministic analogue selection. Livezey and Barnston (1988), and Barnston and 

Livezey (1989) developed a technique that considers both analogues (good matches) and 

anti-analogues (poor matches). Instead of selecting one “best” analogue, the degree of 

similarity between the present and each past year determines the weighting each year will 

get in the forecast. Livezey and Barnston used as inputs principal components of 

Northern Hemisphere pressure heights, pressure level thicknesses, sea surface 

temperatures, surface temperatures over the United States and an index of the Southern 

Oscillation. Livezey et al. (1990) expanded the technique to blend analogue forecasting 

and persistence forecasting. The output of the model was also changed from categorical 

forecasts to deterministic anomaly forecasts.  

Barnston and Ropelewski (1992) evolved the previous techniques by using 

Canonical Correlation Analysis (CCA), a form of multiple linear regression, to forecast 

the behavior of El Niño. Barnston’s (1994) application of CCA to US precipitation and 

temperature followed with widespread operational adoption in 1996. CCA is more 

advanced than simple linear regression in that it accepts more than one predictor and can 

predict a pattern or more than one variable. In essence, one derives the primary modes of 

variability among the predictors using principal components analysis. One then finds the 

primary modes of variability among the predictands using the same technique.  The time 

series of these components are then cross correlated in a multiple linear regression 

framework. In real time, the predictor principal component values are computed, the 

predictand components are forecasted and then the predictand components are projected 
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into their original space (e.g., temperature at various stations).  Screen Multiple Linear 

Regression (SMLR) is similar to CCA (Unger 1996a,b) although it does not perform any 

principal components analysis on the predictand field. SMLR is good at describing fine 

spatial scale forecast features, such as coastal effects, whereas the CCA tends to produce 

smoother predictions in space. CCA finds more use by operational climate forecasters 

than SMLR, while SMLR most resembles what is in use in operational water supply 

forecasting circles.  

Another forecast tool involves the feedback of the land surface on itself. Namais 

(1962) found that anomalously widespread snowcover in the central and southern US in 

1959-60 caused as much as 10° F error in the temperature forecasts that were based on 

pressure level heights alone. The same study identified that precipitation anomalies, 

particularly in the Great Plains, can be self sustaining. A lack of precipitation desiccates 

soils that then have less moisture to evaporate to feed convective storms. Wet soils 

evaporate an abundance of water to convective systems that, in turn, rain more than they 

would otherwise. Building on notions of persistence described previously, van den Dool 

et al. (2003) developed an analogue precipitation and temperature forecasting technique 

that analyzes spatial patterns of a precipitation-based proxy of soil moisture.  This “Soil 

Moisture Tool” (SMT) is mostly used in summer and in the Great Plains.  

Climate forecasters have recognized that decadal variability and trends in climate 

exist and they try to compensate for this using the “Optimal Climate Normal” (OCN) 

tool. Official forecasts are currently expressed relative to a 30-year average, 1971-2000. 

Huang et al. (1996) found that the 30-year average is not necessarily the optimal or most 
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skillful baseline for the forecasts. Instead, OCN subtracts the official 30-year climate 

average from the average over the past 10 years for temperature, and 15 years for 

precipitation. This anomaly then becomes the forecast, usually as a 5-10% probably 

anomaly centered on the largest normalized departures. For example, August-October 

temperatures around Las Vegas, NV have been in the range of the warmest 1/3 of years 

of the 30-year climate normal for twelve of the past twelve years (1991-2002). A 

forecaster should be highly reluctant to forecast anything but high probability of warm 

for this season and location. One can recognize an OCN based forecast feature by its 

appearance year after year. Currently, the only significant precipitation OCN signal in the 

Western US is a tendency for wet April-July in the Northern Cascades and dry July-

September in the broader Pacific Northwest, as indicated by the persistent pattern in the 

recent operational maps.  

The last major class of tools used in climate forecasting consists of dynamical 

numerical models or General Circulation Models (GCMs, Shukla et al. 2000). These 

resource intensive models consider the many complex physical processes that affect 

climate, including the behavior of the ocean, atmosphere and land surface. They are 

initialized with boundary conditions of the ocean (SSTs) and run forward in time with 

persisted SSTs or forecasted SSTs. The model is usually run several times with its initial 

conditions slightly modified each time. The result is an ensemble of forecasts from which 

a probabilistic forecast can be obtained or an average deterministic forecast derived. 

The potential use of GCMs for seasonal climate forecasting has long been 

recognized. Researchers envisioned a day when incredibly powerful super computers 
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would be able to blaze through countless tedious calculations to simulate the behavior of 

the atmosphere. A computer was used for the first time in 1950 to calculate weather 

information in the short range. GCMs grew in complexity in line with increases in 

computing power. Laurmann (1975) captured the belief by some that simulation 

modeling would soon dominate seasonal climate forecasting, despite its shortcomings at 

the time. Others expected statistical techniques to be competitive with simulation 

modeling for many years (Nicholls 1980). While popular among the research community, 

simulation models found little use in the operational climate forecasting environment 

until CPC adopted the model described in Ji et al. (1994). The formation of the IRI 

represents a dramatic shift in operational philosophy with its near total dependence on 

guidance from many different simulation models run in a variety of ensemble 

configurations.  

IRI has also been very active in the practical research involved with use of 

simulation models in an operational environment. Research areas include how to combine 

the output of several models, how to downscale coarse continental predictions into high-

resolution forecasts that consider complex topography, and how to compensate for large 

biases in the models. IRI has also come to appreciate that, compared to statistical 

techniques that are “damped” (i.e., forecast skill and forecast “bullishness” are related), 

simulation models tend to be overconfident and have high false alarm rates (Tony 

Barnston, International Research Institute, personal communication July 17, 2003).  

IRI is especially active in the social science and applications aspects of climate 

forecasting. There is a long history of trying to understand the users, uses and perceptions 
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of climate forecasts (e.g., Easterling 1986; Sonka et al. 1982). Ararbanel et al. 1980 

conveyed from users that the categorical format of climate forecasts made them “virtually 

worthless”). However, this field has benefited from the surge in funding for climate 

change research and the formation of NOAA’s Office of Global Programs (OGP). 

Research on societal vulnerability and adaptation to long-term climate change is highly 

related to topics dealing with interannual and seasonal climate variability. These projects 

have also focused on the effective communication of uncertain and/or probabilistic 

information, and the development of quantitative and qualitative decision support tools 

(NRC 1999; IRI 2001).  

Along with IRI, OGP also funds the Regional Integrated Sciences and 

Assessments (RISA) program, a series of local interdisciplinary social and physical 

research projects, coupled with user outreach and communication activities (“stakeholder 

driven research”). One could easily envision a RISA program conducting intensive field 

tests of different climate forecast formats and displays to determine the strengths and 

weaknesses of, for example, various color schemes and layouts (“product testing”). 

RISAs will eventually learn from and contribute to the fields of usability engineering 

(Nielsen 1994) and information design (Tufte 2001) in the context of climate forecasts.  

 The remainder of the research community is focusing on a wide variety of topics 

(see also chapter 3). Along with the continued study of well known phenomena (e.g., El 

Niño), researchers are branching out into phenomena such as the Arctic Oscillation, the 

Pacific North American Pattern, the North Atlantic Oscillation, and others, some of 

which are interlinked. Researchers are also interested in multi-year to decadal variability 
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such as the Pacific Decadal Oscillation and the Quasi-biennial Oscillation as well as 

intra-seasonal (30-60 day) variability such as the Madden Julian Oscillation. Finally, 

researchers are investigating complex climate features that typically have been difficult to 

predict, such as summer convective rainfall and the monsoon.  

 Operational climate forecasters generally consider information about El Niño and 

the output of their core tools generally tested and reliable. Information about decadal 

oscillations, the monsoon or other research topics are on the minds of forecasters but this 

information rarely finds its way into operational forecasts unless it is quantifiable and 

generally accepted. For example, information about the PDO is not formally used in 

forecasting, outside what may be picked up by the CCA or OCN tools; there is some 

skepticism on the part of forecasters that the PDO is a real phenomenon independent of 

El Niño (see also chapter 3.3). Nonetheless, there is an active, vibrant and well-funded 

operations-oriented climate research community interested in process studies, simulation 

models, statistical tool innovation, and the communication/use of products.  

 

4.2.3 The operational climatology environment 

 

Two major centers produce official climate forecasts over the United States: the 

NWS Climate Prediction Center (CPC) and the International Research Institute (IRI) for 

Climate Prediction. The IRI has a broader scope in that it produces forecasts for all land 

areas of the globe whereas the CPC is focused on the United States. Both agencies 

employ approximately 70 personnel, ¼ of which are involved with research and tool 
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development, 1/5th engage in climate data monitoring, and 1/10th are operational 

forecasters although these boundaries are blurred as operational forecasters also do 

research, and researchers participate in forecast production. IRI has 30% of its staff 

devoted to user-oriented applications development, whereas the CPC is linked to the 

recently formed NOAA climate services division (10 employees).  These figures do not 

include the broad real-time operational support these entities receive from academia, 

international agencies and groups such as the Climate Diagnostics Center in Boulder. 

Colorado. For example, 17 groups around the world contribute their predictions of El 

Niño Sea Surface Temperatures to IRI every forecast cycle.   

As forecasts are produced every month of the year, climate forecast activities do 

not have a pronounced seasonality aside from the seasonal variation in forecast skill.  The 

impact of El Niño on climate tends to be greatest in winter so if an El Niño event is 

present, there may be increased focus and visibility given to forecasts issued September 

to December. If anything, climate forecast activities vary more on interannual time 

scales; the mix of tools and techniques used during El Niño will be different than those 

used during “Non-Niño”, with heavier emphasis on statistical techniques during the 

former and dynamical techniques for the latter.  

At the IRI, (Tony Barnston, Head of Forecast Operations IRI, personal 

communication July 17, 2003), the forecast cycle begins after the Thursday nearest to the 

middle of the month, with the anticipation of the Sea Surface Temperature (SST) 

anomaly forecasts. These anomalies are stitched together from separate dynamical and 

statistical predictions for the tropical Pacific, Indian, Atlantic Oceans and others, some of 
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which come from external groups.  Ocean temperature anomalies have strong persistence 

and it is difficult for short-range ocean temperature forecasts to outperform persistence. 

Therefore, in parallel, the IRI also gets the most recent observed SST anomalies and 

persists those forward in time.  

The various sets of SSTs then form the boundary condition for runs in up to 6 

atmospheric General Circulation Models (GCMs). Most of these GCM runs are done by 

external groups at the Scripps Institute for Oceanography, the Center for Ocean Land 

Atmosphere studies, the NASA Goddard Space Flight Center, and a climate forecasting 

group in Queensland, Australia. This stage of the process often takes up to a week as 

invariably one of the groups has technical difficulties and is delayed.  

The data returns to IRI where the forecasters apply sophisticated automatic 

statistical post processing techniques to combine the various model outputs and to censor 

out regions on the maps where the models have a poor track record of skill. In total, over 

60 forecast maps are combined to produce maps of results by individual model, and a 

single map of all models together. This last map serves as a rough draft for the final 

forecast product, although the individual model maps can be consulted if the forecaster is 

curious about what they contain. This part of the cycle may be different for the CPC, 

which relies heavily on statistical forecasting techniques. The conceptual underpinnings 

of CPC’s tools are described in chapter 4.2.2 and in Hartmann et al., (1999).  

Once a month, about 7 working days before the forecast issuance, the CPC hosts a 

conference call in which 5-10 of about 20 interested parties across the nation, including 

the IRI, discuss the conditions for the US. Participants are guided through a CPC-



 

87

maintained webpage with over 35 links to realtime data and the results of forecast tools. 

A forecaster begins by discussing the performance of last month’s forecast, including 

physical explanations for any significant forecast errors. About 1/3 to ½ of the meeting 

then centers around the current state of El Niño and the predictions for how it may wax or 

wane in coming months. Aside from the random nature of climate, the expected state of 

El Niño is one of the greatest sources of forecast uncertainty. Eight tools may indicate the 

formation of a strong La Niña, seven tools may indicate “Non-Niño” and three may show 

an impending El Niño. Individual experts’ opinions also tend to diverge on this point.  

After showing the recent behavior of large-scale atmospheric pressure patterns 

across the Northern Hemisphere, the lead forecaster will continue by showing the results 

of several different statistical tools. The individual may have a favorite tool he routinely 

consults or perhaps only one or two tools are giving a strong indication for wet or dry 

conditions. He weighs the strength of the forecast anomalies, the track record of skill for 

individual tools and if there is any consensus among the different tools. In some locations 

(i.e., temperatures in the southwest) all forecast tools might agree and depict a strong 

signal. In most locations and particularly for precipitation, many of the tools lack skill 

and those that do have skill have conflicting guidance. In general, the climatologist is 

focused on “forecasts of opportunity”; the forecast map, by default, is unfilled 

(“climatology”) until some clear signal emerges that a skillful forecast is possible. 

Human judgment does play a role, although operational climate forecasters tend to be 

uneasy about making a forecast that does not have any support from the existing array of 

objective tools.  
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At CPC, the specifics of the forecast map show the human hand, however. Aside 

from narrow coastal effects, forecasters generally draw features that are no smaller than 

the average Western US state. The “southwest” in the climate forecaster’s statement “wet 

in the southwest” may mean Arizona, New Mexico, the southern halves of Colorado and 

Utah and a sliver of Texas and California. Wet anomalies and dry anomalies almost never 

share a border, in that a strip of climatology/indeterminacy will always separate them. 

Five percent probability anomalies usually indicate that there is limited consensus among 

tools, although the balance of evidence suggests that the precipitation may favor, say, wet 

as opposed to dry. Ten percent probability anomalies are often used to denote the 

epicenter of where a forecaster thinks that an effect may be strongest or where he is the 

most confident. For precipitation, probability anomalies greater than 10% rarely occur, if 

ever, outside of El Niño events. During El Niño, the specifics of these strong probability 

anomalies are often guided by historical frequencies of occurrence of various 

precipitation amounts.  

In other words, unless a strong El Niño is underway, CPC forecasters are rarely 

literal about the meaning of the probabilities associated with the forecasts. Gradations of 

probability anomalies are used to indicate forecaster confidence (or lack thereof). Gilman 

(1982,1986) describes the semi-quantitative method for creating probabilistic operational 

climate outlooks in the 1980s.  Probabilities are determined by balancing the observed 

performance of the official categorical forecasts issued 1959-82 with the degree of 

consensus among four forecasters (who independently drew up their own categorical 

forecast map). Maps of maximum potential predictability from Madden (1981) were used 
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to reign in overconfident forecasts. While this technique is no longer in use, it captures 

the spirit of what is done today.  

After the multi-agency conference call, three IRI forecasters sit down with the 

multi-model objective forecast maps and discuss if and how to make any changes. They 

consider very recent changes in SST that would have affected the model runs, had they 

been known at the time the runs were made. If an El Niño event is under way, they 

subjectively blend the model results with historical statistical composites and analysis. 

They also defer to local experts (e.g., CPC for the US or climate forecasters in India for 

their region).  

Small groups from the IRI and CPC revisit by conference call two days before the 

forecast issuance to discuss the first draft of the actual forecast maps. The next morning, 

the lead forecast individuals from the IRI and CPC review finer points about the forecast, 

mostly about the state of El Niño and sub-seasonal (30-60 day) oscillations in tropical 

precipitation. This is then followed up by another IRI/CPC group conference call to 

review the final draft of the forecast maps over the US, after which the forecasts are sent 

to media and graphics support personnel. The final forecast maps are released to the 

public on the Thursday nearest to the middle of the month at 15:15 eastern time (although 

this may change in the future to earlier in the morning to accommodate domestic 

financial markets).  
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4.3 Western water supply outlooks  

4.3.1 Current products 

 

 Currently, the Water Supply Outlooks (WSOs) are issued jointly by the NWS 

River Forecast Centers (RFCs), the USDA Natural Resources Conservation Service 

(NRCS) and, in certain basins, the Salt River Project (SRP). These forecasts are available 

in print “Basin Outlook Report” publications or on the Internet at 

http://www.wcc.nrcs.usda.gov/wsf (see also chapter 2.6). 

These forecasts have been issued in generally the same format since the 1930s. 

The WSOs are issued from January through June and they predict the volume of 

naturalized streamflow for various target periods. In the Pacific and Interior Northwest 

the target period is April-September, at the West’s midsection it is April-July. Due to the 

earlier melt in the Lower Colorado Basin, the forecast period begins sooner and 

decrements each month to include only the future. Specifically, a forecast issued 1 

January has a target of January through May and a forecast issued 1 April has a target of 

April-May. Many locations have multiple target periods to satisfy the interests of 

multiple users (e.g., reservoir operators versus irrigators). A limited number of single 

month forecasts exist (e.g., January volume) as well as forecasts for exotic variables, such 

as the rise in elevation of a specific lake or the date that the daily flow will fall below a 

certain threshold (e.g., 200 cfs). 

 For a given location and target period, the forecast consists of the volume 

corresponding to each of the 10%, 30%, 50%, 70%, and 90% exceedence probabilities. 
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The 50% exceedence probability number (median forecast) is a popular “shorthand” for 

the entire distribution; In some publications, this value is referred to as the “most 

probable” forecast, although the term is not statistically accurate nor is it the preferred 

terminology. The publications also generally include values for the historical (e.g., 30-

year) normal streamflow for each basin, and the median forecast streamflow expressed as 

a percent of the historical normal. The historical normal is the long term average except 

in Arizona where it is the median.   

 The NRCS produces several derivative products such as color-coded maps of the 

median forecast expressed as percent of the historical average. It also produces horizontal 

bar charts whose lengths are proportional to each of the probability of exceedence levels 

described above (see also figure 9.1). Another derivative product, the Surface Water 

Supply Index (Doesken, et al. 1991; Shafer and Dezman 1982) is supported in some 

states but not others. There are many variants to the SWSI, but a popular version is 

described in Garen (1993). The current reservoir contents are added to the water supply 

outlook volume, and the ranking of this total volume in the historical distribution is 

determined. This exceedence probability is then rescaled from –4.2 to 4.2 so that the 

index has a range similar to the Palmer drought indices (-4.2 indicates the driest year on 

record). The SWSI is particularly useful in placing the seasonal water supply forecasts in 

the context of the total water availability on the watershed.  

In the near future, long-lead predictions of peak flows, low flows, and number of 

days to a particular flow threshold will be routinely produced through the NWS 

Advanced Hydrologic Prediction System (AHPS).  The AHPS Ensemble Prediction 
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System (ESP) involves the calibration of a hydrologic simulation model, model 

initialization using current watershed states, and forcing based on a number of observed 

historical meteorological traces.  The output is a series of “possible future” daily 

hydrographs, from which the above mentioned characteristics can be derived.  The NRCS 

NWCC is also actively developing this kind of capability, including an advanced 

spatially distributed hydrologic simulation model. The delivery mechanism and 

visualization tools for this kind of forecast are yet to be determined. The Colorado Basin 

River Forecast Center is testing an operational prototype to display ensemble daily flow 

trace forecasts, although their visualization tools are in such rapid development that any 

description herein would soon be outdated.  

 

4.3.2 Operations research and evolution of forecast techniques  

 

  As mentioned previously, Dr. James Church began the first program of 

systematic western snow surveys in 1906. Church continued his program of measurement 

when heavy snows in 1910-11 and the threat of flood concerned the Sierra Pacific Power 

Company. The company urged Church to translate the snow measurements into a 

seasonal streamflow forecast. This forecast, the first of its kind, involved determining the 

percent of normal of snowpack and directly relating that to the percent of normal 

streamflow. H.P. Boardman, professor of civil engineering at the University of Nevada, 

developed the forecasting equations.  The forecasts were well received until 1915-1916: 

the first “busted” forecast. A near complete absence of spring precipitation caused a 
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divergence between the forecast and observed streamflow of 50%.  So too was born the 

first irate water supply forecast user. However, cooler heads prevailed and the venture 

continued on (Church 1937; Poulton 1964). Over the years, minor adjustments were 

made to the snow sampler (such as its dimensions) but Church’s overall design remains 

the same.   

Snow survey programs appeared in 6 regions from 1917-29 (Marr 1936). Each 

state produced its own water supply forecasts and delivered these products to users by 

post or radio address. In the mid-1930s, on the back of the Dust Bowl, the NRCS (then 

called the Soil Conservation Service) was formed and took the reins of snow surveying 

activities. Helms (1992) provides an excellent history of the evolution of the snow survey 

data-collection program after the formation of the NRCS.  

Until the 1960s, statistical techniques that were primarily snow-based remained 

the only tool for water supply forecasting (Garen 1992). The earliest efforts before the 

1940s based the forecasts on the components of a water balance with parameters derived 

from basin characteristics. In other words, these hydrologists tried to explicitly measure 

the volume of snowpack, the expected volume of evaporation, soil infiltration and other 

water balance components. Soon after, the merits of automatic regression techniques 

were recognized. “Graphical” procedures were popular in the Bureau of Reclamation and 

to a lesser extent in the NRCS. The hydrologist would draw and trace along a multi-step 

nomograph (i.e., begin with 1 April snow, follow across a graph until intersecting a line 

for fall precipitation, then trace down until intersecting a line for spring conditions then 

trace across for the streamflow forecast).  
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The operational literature after the 1940s then focused on three questions. First, 

which forecasting data are better, snow surveys or accumulated precipitation? The former 

was the mainstay of the NRCS, the latter was that of the NWS. In an operational sense, 

each agency had easy access to its own data. However, the NRCS contended that 

precipitation data accumulated in valley floors is not necessarily related to the water 

content on the watershed. Most of what will eventually become streamflow is temporarily 

stored in high elevation snowpack. The widespread homogeneous synoptic scales of 

winter precipitation systems make this a minor issue in practice. Ultimately, the answer is 

that both are valuable, but that one gets very similar overall skill using only one or the 

other data stream (see also chapters 7.2-7.7). Precipitation information does seem to be 

more important in far southern basins, such as Arizona and New Mexico (Lettenmaier 

and Garen 1979), while there are data quality issues with unshielded NWS gages in 

northern climates. 

Second, what data besides winter snow and precipitation can be used to forecast 

streamflow? The issues of sublimation and soil moisture have vexed water supply 

forecasters for generations. While many studies of blowing snow and sublimation 

processes have been done, particularly on snow fences and forest-thinning practices, the 

interannual variability of sublimation has never been well measured or accounted for in 

forecasting. Wind fetch data were used but never caught on. Baseflow and fall 

precipitation are popular proxies for soil priming and soil moisture. The NRCS collected 

soil moisture data at its snow courses sporadically in the 1940s to 1960s. The data were 
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difficult to obtain and the short time series of observations made them of little use in 

regression forecasting. The soil moisture data collection effort was eventually abandoned. 

Degree days and spring temperature data piqued the interest of some forecasters, 

but this information had more of a coincident, rather than predictive, effect on streamflow 

amount and runoff efficiency. The fringe of forecasting research touched on sunspots in 

the 1970s to little avail (James Marron, NRCS National Water and Climate Center, 

personal communication, May 2003). Studies even showed that winter streamflow data in 

low-elevation rain-fed watersheds in western Washington and Oregon could compete 

with snow indices in forecasting seasonal flow on the Columbia River. All of the above 

issues are discussed in Army Corps of Engineers (1956) and CBIAC (1961,1964). Most 

analysis shows that, with respect to seasonal streamflow forecasting, observed snow and 

precipitation account for the lion’s share of predictability. Using exotic variables gives 

diminishing returns on skill.  

Third, some agencies used “future variables” in forecasting whereas others 

avoided it. For example, an equation for forecasting April-September streamflow would 

include 1 April snowpack, fall precipitation or baseflow, and an index of spring 

precipitation and/or temperature. On 1 April, one generally does not know the character 

of spring precipitation yet to come. The forecaster either assumes the long-term normal 

precipitation, or adjusts it away from normal based on expert judgment or a climate 

forecast. A forecast issued on 1 March also extrapolates the current snowpack to what it 

may be on 1 April, perhaps by assuming normal snowpack accumulation or a persisted 

trend. In contrast, other agencies would simply not use any “future variables” and use 1 
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March snowpack to predict streamflow directly without extrapolating the snow to its 

expected value on 1 April.  

Both techniques have advantages and disadvantages. “Future variable” equations 

are convenient to be able to ask “what if?” questions about the forecast, such as, “how 

would 150% of average spring precipitation change the streamflow outlook?” or “What 

precipitation will we need to get normal runoff?”  It was also perceived that the former 

technique was more consistent from month to month than the latter because one forecast 

equation was used throughout the season, and there wasn’t the possibility of forecast 

discontinuities that may arise from having different equations for each month. However, 

hydrologists have relatively low skill in assuming anything but normal about the future 

climate, especially if the adjustments are subjectively based (Pagano and Garen 2005a; 

Hartmann et al. 2002a). Garen’s (1992) analysis also allayed concerns about forecast 

consistency by showing that, in practice, each technique is just as likely as the other to 

produce forecast “waffles” (changes in forecast direction) throughout the season. Since 

the 1980s and particularly in the 1990s, “future variable” equations (i.e., equations that 

include quantitative estimates of future precipitation amounts) have waned in popularity. 

There was some use of “future variable” equations by the NRCS in Arizona and by the 

NWS in several other regions (Tom Perkins, NRCS National Water and Climate Center, 

personal communication, 5 August 2004). Today the NRCS does not use any “future 

variable” equations although this methodology does still find limited use in the NWS, 

particularly in the Pacific Northwest.   
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In the 1960s and 1970s computers entered into the realm of operational water 

supply forecasting, beginning with statistical experiments in Montana (Codd and Farnes 

1960; Johnson 1960). In time, focus was turned to conceptual and physically based 

watershed simulation modeling. The primary priorities of the NRCS snow survey and 

water supply forecasting program in the mid 1980s were to discontinue snow courses in 

favor of automated SNOTEL sites, and to implement simulation modeling for 

forecasting. Remote sensing of hydrologic information was also very popular in the 

research community in the 1980s (e.g., Deutsch et al. 1979). While the NRCS has 

completely integrated computers into its operations, it has fallen short on simulation 

modeling and the use of remote sensing data. None of the many NRCS simulation 

modeling experiments (e.g., Jones et al. 1981; Marron 1986; Perkins 1988) have been 

sustainable. However, the NWS has implemented the Sacramento model in its operations. 

Neither agency uses satellite data because of the inability to see snow under clouds and 

forests. Satellite information is also not a convenient or timely data stream in the 

operational environment.  

Most recent operations-oriented research (as presented at the annual Western 

Snow Conference) focuses on one or more of four topics. First, efforts are under way to 

develop high quality spatially distributed maps of snowpack (and to a lesser extent 

precipitation), based in part on remotely sensed satellite data. Next, the descriptions of 

snowpack processes in simulation models are being refined through data gathered in field 

experiments (e.g., Brubaker et al. 1996) This also includes studies that set up and test 

simulation models on individual basins. Third, GIS technology is being used in the 
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context of spatial snow maps and hydrologic modeling. Finally, several researchers are 

looking at the relationship between climate, snowpack and streamflow, with an eye also 

on long-term trends and decadal variability, similar to this dissertation. Occasionally, 

research on statistical methodology (e.g., Garen 1992), non-linear, fuzzy logic, or neural 

network forecasting techniques is reported. 

The Western Snow Conference is also a forum for presenting research results of 

natural resource studies, such as on the relationship between water yields and forest 

management practices, which are of secondary interest to water supply forecasters. A 

small amount of NRCS-sponsored research is being done on advanced in-situ snow 

sensor technology, in hopes of eventually replacing SNOTEL snow pillows with fluidless 

sensors that are more environmentally benign and are less sensitive to diurnal 

temperature variations. Very little research, most of which is anecdotal, focuses on the 

use of water supply forecasts or how users perceive and interpret them. 

Regrettably, until the NRCS adopts a spatially distributed simulation model, its 

water supply forecasters cannot take much advantage of many research advances, such as 

spatially distributed snow maps. However, it cannot adopt a simulation model until the 

spatially distributed data are of sufficient quality, operationally attainable and easily 

processed. Until this gridlock is broken, results from these major thrusts of the research 

community, besides climate, are practically inaccessible to NRCS operations.  
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4.3.3 The operational hydrology environment 

 

In 2002, four NRCS hydrologists were responsible for forecasts at over 700 

locations. One hydrologist is responsible for the Missouri Basin and Platte River, while 

another is responsible for the Great Basin in Utah and the Columbia. The third 

hydrologist is responsible for coastal basins from Lake Tahoe to the Olympic Peninsula 

and the Cascades flowing west. The author is responsible for 206 locations in the Upper 

and Lower Colorado River Basin, the Rio Grande, the Arkansas River, the Yukon and 

Alaska.  

Each hydrologist coordinates with counterpart hydrologists in developing 

forecasts. For example, the author coordinates with four NWS hydrologists in the Upper 

Colorado Basin, one NWS hydrologist and the Salt River Project hydrologist in the 

Lower Colorado, one NWS hydrologist in the Rio Grande, and two NWS hydrologists in 

the Arkansas. While there is no counterpart NWS hydrologist in Alaska and the Yukon, 

the NRCS snow survey supervisor for Alaska participates in the development of those 

forecasts. The operational perspective, herein, is that of the NRCS hydrologist.  

At the start of the water year, 1 October, the hydrologist is typically involved with 

developmental activities including but not limited to touring watersheds and snow 

measurement sites, interacting with user groups in the field, miscellaneous research 

activities and redevelopment of forecasting equations. The balance between off-season 

“research” vs forecast environment maintenance depends on the individual forecaster’s 

personality. Under special circumstances, the hydrologist may be addressing an 
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exceptional event with ad-hoc forecasts or analysis on demand, such as the effects of a 

recent fire on runoff efficiency or the expected impacts of El Niño on the coming season.  

Forecasters have broad liberty to develop forecast equations as they see fit. 

Equation development is a balance between several factors. Variable selection is guided 

by a desire to have complete geographic coverage of the basin (across the land and with 

elevation), recognizing that not all sites have a long period of record. Data sites within 

the basin boundaries are favored over those outside the basin boundary. SNOTEL sites 

are favored over sites from other agencies (such as NWS Cooperative Observer data); 

because SNOTEL data are easily accessible in realtime during forecasting, whereas NWS 

data may arrive several days after the start of the month.  

In general, the equation developer is encouraged to use sound hydrologic 

judgment, as subjectively interpreted by the developer. The hydrologist presents a list of 

candidate variables to the development software, RegComb (Garen, n.d.), which then 

returns a list of the 20 best variable combinations. The hydrologist then selects one or 

more equations that have a set of variables that are generally consistent from month to 

month. This prevents the discontinuities that would arise if site “A” is used to create a 

forecast in January and site “B” in February.  

Each forecaster has different perspectives and preferences on the importance of, 

for example, record length compared to complete geographic coverage. This issue is 

important with respect to SNOTEL sites that have 25 or fewer years of data. Some 

hydrologists feel comfortable with an equation developed using as few as 12 years of data 

whereas others are more conservative. The NWS Colorado Basin River Forecast Center 
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has a policy of developing equations using only serially complete observations from 

1971-2000 to be consistent with the period used by the NWS to define climatological 

“normal”. This implies that no SNOTEL data would be used in equation development, 

but operationally, the SNOTEL data has been back estimated using snowcourse data.   

One positive aspect of this system is that the forecasters have flexibility to 

innovate and develop a system that they feel works best for their region. The drawback is 

that there is less uniformity and consistency across forecast regions than there would be 

otherwise. One forecaster may have a complex set of equations, using fall precipitation, 

antecedent streamflow, climate indices, several snow sites and spring precipitation as 

variables. Another may have a limited set of equations only based on snow, with the 

expectation that the results will be manually adjusted at forecasting time based on 

qualitative information about those other factors. Although the general policy is complete 

redevelopment of all equations every three to five years, a forecaster may even inherit 

decades-old legacy equations from previous forecasters.  

The snowpack accumulation season starts in October and November, depending 

on the region, and the hydrologist measures the season’s early progress on relatively 

infrequent intervals (i.e., twice a month). In December, the hydrologist can begin using 

the software environment (the FCST program) to produce forecasts. Procedures are 

available (the Loadswe program) to extrapolate December snowpack at any given 

SNOTEL site to what it might be on 1 January. These extrapolated data are then used in 

the 1 January forecast equations. The results may be shared internally or with other 

forecasting agencies and users on an informal basis. Some, but not all, NWS River 
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Forecast Centers have been known to put such “early bird” forecasts on their Internet 

webpages. 

The NRCS water supply forecasting software produces ascii text tables of forecast 

equation coefficients, inputs, and outputs. The latter two are expressed in volumes and as 

percent of the long term average (Table 4.1). The forecast tables are the only uniform 

guidance available across NRCS forecasters. Individuals, on their own initiative, may 

draw in external information from various sources. In the throes of forecasting the 

hydrologist does not have easy, immediate access to historical NRCS data to analyze, for 

example, the historical probability of exceedence of a snow measurement, or a list of 

historical years with similar snow conditions. Some, but not all NWS River Forecast 

Centers have this information available interactively on their webpages. The forecaster 

may draw a map of basin snow conditions; GIS data visualization support is not officially 

provided, although some forecasters have taken the initiative to struggle with this 

technology. Within three years, the NRCS forecasting software environment will be 

redeveloped and the data visualization issues may be addressed (see also SCS 1988 for a 

more detailed operational forecast improvement plan). 
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Table 4.1. Abbreviated 1 June 2003 water supply forecast guidance form for the Pecos 
River near Pecos, NM. The forecast target is Mar-July volume in thousands of acre-
feet (k-ac-ft). Explanation at bottom.   
 
 
Pecos River nr Pecos                               MAR-JUL VOLUME   
        
                                                                       
T Mnth     SITE NAME         I.D.       COEF        VALUE      AVERAGE     % 
---------------------------------------------------------------------------- 
P -9  GALLEGOS PEAK SNOTEL   S243       1.893        1.80        2.28     79 
P 10           "             S243       1.893        3.00        2.03    148  
P  4           "             S243       1.298         .90        2.55     35 
G -9  PECOS R NR PECOS       378500      .287         .00         .00    107 
G 10           "             378500      .287        1.50        3.20     47 
G  3           "             378500     4.205        2.20        2.90     76 
G  4           "             378500     1.281        5.90        7.10     83 
G  5           "             378500      .588       22.30*      22.30    100 
S  3  GALLEGOS PEAK SNOTEL   05N18S     2.368       10.00        9.50    105 
S  5  WESNER SPGS SNOTEL     05P08S      .636        8.20       11.30     73 
S  6           "             05P08S      .636         .00        2.70      0 
C     --   INTERCEPT    --            -19.385        1.00         .00    100 
 
 
                    FORECAST =    50.0   (  86.0%)          AVERAGE =    58.0 
                     (  10%) =    58.0   ( 100  %)               SE =   6.469 
                     (  30%) =    53.0   (  91  %)         MIN FLOW =    8.59 
                     (  70%) =    47.0   (  81  %) 
                     (  90%) =    42.0   (  72  %) 

 
 

   JANUARY   FEBRUARY      MARCH      APRIL        MAY   
          Volume   % Volume   % Volume   % Volume   % Volume   % 
Equation    86.2 149   58.0 100   70.0 121   72.0 124   65.0 112 
Published   61.5 106   55.0  95   62.0 107   58.0 100   54.0  93 

 
Column 1: Data type (P = precipitation, S = snow, G = streamflow, C = constant).  
Column 2: Measurement month (i.e., G10 = October streamflow)  
Column 3,4: Station name and identifier code.  
Column 5,6: Regression coefficient and this year’s data value (*=missing, long term 
normal used as substitute). Units: P, S in inches, G in k-ac-ft.  
Column 7: Long term average of this data value 
Column 8: The current data value as percent of average 
 
In the bottom half of the table are the various forecast probability of exceedences (as 
volumes and a percent of the long term normal), as well as ancillary statistics about 
the average flow, historical minimum, and equation standard error. The bottom section 
traces the evolution of the preliminary (top) and official (bottom) forecast values by 
issue month, as a volume and as percent of average. The official guidance was 
consistently lower than the regression equation throughout this season.  
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On the first working day after 1 January, the author has about four working hours 

to acquire preliminary data, create, analyze, and adjust forecasts for close to 100 points 

on the Upper Colorado Basin. The author is then contacted by the Colorado Basin River 

Forecast Center for an hour-long conference call to develop preliminary forecasts for 13 

major downstream locations, such as the inflow to Lake Powell. This coordination 

involves a discussion of basin snowpack and soil moisture conditions, with mention of 

the seasonal climate forecasts, followed by the hydrologists presenting their desired 

forecast numbers. It is impossible to generalize, but on the Upper Colorado Basin, the 

disagreement is typically within 5% of the average flow. In the San Juan it can be as 

much as 10% different, and in Arizona the discrepancy can be much wider in part 

because the flows there are more variable.    

Rectifying the forecasts and agreeing on a final number is a subjective process 

and varies by region and forecaster. The forecasters may state their reasoning for and 

confidence in their forecast, cite ancillary analysis they have done, offer historical 

analogues and anecdotes or probe for weaknesses in the other hydrologists technique 

(e.g., “do you account for the lack of low elevation snow?”). The NWS hydrologist may 

compare the output of his regression equations and the median of the ESP distribution. 

Sometimes, out of convenience or an inability to agree, the forecasts may simply be 

averaged. In the rare instance of contentiousness that precludes coordination, each group 

has an official site list of which agency has the final authority over the forecasts. 
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Typically, the NRCS is responsible for headwater locations and the NWS has control 

over downstream forecasts into major reservoirs.  

In the next 1.5 working days, new data filter in from NRCS state snow survey 

personnel and the hydrologists’ analyses continue. NRCS state personnel receive reports 

of manual snow course measurements and conduct their own manual ground-truthing of 

snow measurements at SNOTEL sites. Using human judgment and a limited set of simple 

quantitative tools, the state personnel also adjust or estimate data from problem sites. As 

necessary, a forecaster may also estimate, adjust or ignore any piece of datum, although 

these changes are not recorded in the official database archive. Each forecaster may deal 

with 200-300 unique snow measurements per month, depending on the complexity of his 

forecasting equations and region.   

Throughout the analyses, the first question the hydrologist is typically trying to 

answer is “How much snow is in the basin and where?” with subtexts about data quality 

and spatial representativeness of SNOTEL sites. Next the hydrologist may ask, “How 

much will soil moisture deficits affect the runoff efficiency of the snow?”, “What can be 

said about the future climate being wet or dry?” and finally, “What is not accounted for in 

the forecast equations, that could have a significant impact on runoff (e.g., the major 

storm in the weather forecast)?” In the midst of forecasting, there is little time to find 

anything more than a superficial answer to any of these questions for a limited number of 

locations. Therefore, some hydrologists try to begin this analysis before the start of the 

forecast season or during the middle of the month before the next forecast cycle. 



 

106

The coordination discussion continues either by E-mail or telephone and a full set 

of coordinated forecasts is typically available for the Upper Colorado River Basin on the 

third working day of the month. A final set of forecasts for the other 80 forecasts on the 

Lower Colorado, Rio Grande and elsewhere may follow a day or two afterwards. 

Coordination on the Columbia basin may take up to a week.  

The discussions are clearly focused on the 50% exceedance probability (or “most 

probable”) forecast and the forecasts are framed in deterministic terms (often as percent 

of average). After this number is agreed upon, the other probability of exceedance 

forecasts are determined. This probability envelope is based on the root mean squared 

error (RMSE) of the forecast equation during jackknife calibration and assumes a normal 

distribution unless the forecast equation is non-linear (NRCS 2004). Although the 

statistically savvy may question the validity of the practice, the forecast error bound is 

centered on the coordinated 50% exceedance probability forecast. Often, out of 

convenience, one hydrologist may agree to accept the bounds from the other hydrologist 

for all locations. The bounds typically do not receive much attention unless the results are 

grossly physically unrealistic. Examples include when the lower bound is lower than the 

minimum flow on record, is negative or, in the case of a forecast to be issued in May or 

June for a forecast target starting in April, is less than what has already been observed 

(implying negative flows into the future). No standard procedure exists for determining 

the new bounds in these situations and the forecaster generally improvises. As of late 

2004, an internal document about NRCS “best practices” in equation development, 

forecast adjustment and bounds determination was nearing completion (NRCS 2004).   
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The finished set of coordinated forecasts are sent to the NRCS state personnel 

who develop the text and supporting information for the State Basin Water Supply 

Outlooks. Within a day or two, this information is returned to the hydrologist, who 

assembles the text with the forecasts and posts the information to the Internet. State 

personnel also then send this information to print shops and eventually send the bulletins 

out in the post. Westwide publications can only begin when all regions have been 

finished, and as such are typically posted to the Internet around the 10th working day of 

the month. The agency is under constant pressure to reduce the time it takes to create and 

deliver the forecasts. Users have been known to begin contacting the NRCS as early as 

the second working day of the month, inquiring about the delay in the forecasts. The 

phrase “1 January” forecast can be misleading to users who expect the forecast to be 

issued and distributed on the first of the month; the date refers to the data used to develop 

the forecast.  

The process begins again every two weeks, on the 1st and 15th of each month until 

May. The NWS continues to issue and the NRCS may coordinate on forecasts into mid 

July or later for select locations. This rapid cycling affords the hydrologist limited time to 

engage in other operational activities, such as fielding requests from users and questions 

from the media, visiting the field to inspect basins and give presentations to user groups, 

prepare special reports on the status of the season or do developmental activities. The 

forecasts issued on 1 April are generally thought of as the most critical water supply 

forecasts of the season, with those issued on 1 May a close second. Beginning in April, 

the hydrologist is inspecting the status of the snowpack, its melt rate and realtime 
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streamflow data, on a daily to hourly basis. Aside from a procedure that seamlessly 

integrates climate information into the water supply forecast process, forecasters would 

be most receptive to climate information from an external source during the week before 

the 1st of the month.  

In absence of an exceptional hydrologic event, in mid-June or after the 

streamflow peak has passed, the forecaster’s attention returns to research and 

developmental activities, such as those being done at the beginning of the water year. A 

subset of users begin to crave early season forecasts in September and, if he chooses, the 

hydrologist may provide this guidance directly, or at water users meetings that typically 

occur in the fall.   

 

4.4. Summary and conclusions 

 

Water supply and climate forecasting have many aspects in common. Much like 

in other fields, such as economics, the forecasting process is a three-legged stool. The 

forecaster observes the system state (be it the status of snowpack or the global patterns of 

temperature in the ocean). Analytical tools and computer models process the data to 

provide objective guidance. Finally, the forecaster applies intuition and professional 

expertise to the results.  Both fields are vulnerable to data quality issues and both must 

deal with uncertainty and the random elements of nature.  

Climate forecasting is a fundamentally much more uncertain enterprise, however. 

Climate is a chaotic system, determined primarily by internal feedbacks such as the 
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interaction between the ocean and atmosphere. Hydrology is a damped system, 

integrating processes over time (seasons) and space (watersheds). Both are sensitive to 

initial conditions but with different consequences. While hydrologists may disagree about 

whether a forecast should be for 63% of average or 68% of average, a climatologist may 

have three tools that say the future may be wet and five tools that indicate dry for the 

same location. Which tool(s) should the climatologist believe? The confidence in water 

supply forecasts is thus much greater than climate forecasts, as are their skill (Pagano and 

Garen 2005a; see also Chapter 6 and 7).  

Perhaps out of necessity, climate forecast technologies are far more complex than 

those used for water supply forecasting. The NRCS hydrologist may have one or more 

regression equations per location. The NWS hydrologist may also have an ensemble 

forecast from a simulation model developed in the mid-1970s. In the United States, the 

climatologist has realtime operational guidance for precipitation from no less than ten 

different statistical techniques and twelve simulation models. The data stream of the 

climatologist is orders of magnitude larger than hydrologist.  

This is not to say that the hydrologist is any less harried, as both forecasters’ 

schedules are measured in hours to minutes. Climatologists have made better use of 

automatic data processing and data quality screening technologies. They also have 

vigorous support from the academic and research communities, routinely drawing in 

quantitative guidance from 17 external groups for ocean temperature predictions, and at 

least six groups for their precipitation forecasts (Tony Barnston, IRI, personal 

communication, 2003).  Streamflow forecasting is a relatively isolated activity, in part 
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because there is little incentive for an individual in Arizona to be concerned with the 

quality of predictions in Montana. In contrast, international forecasting groups that pool 

their resources to improve predictions of El Niño can all benefit.   

All of the internal and external climate guidance is macro-scale in nature. With 

limited exception, the climatologist is analyzing continental to hemispheric maps 

compared to the hydrologist who is inspecting tables of data within individual basins. A 

small group of climatologists form a draft national forecast map and a broader audience 

of experts refines it. Hydrologists closely scrutinize conditions in their local region, and 

the final national forecast map is stitched together at the end with little cross-basin 

communication (or interest).  

Hydrologists may benefit from the social science and usability research done by 

climatatologists. Indeed, aside from theoretical and economic studies (such as Held and 

Jacobs 1990; Kim and Palmer 1997) the seasonal water supply forecasting literature is 

practically devoid of any studies of its users and their issues. Climate forecasting grew 

out of an academic exercise and as such climatologists needed to search for and entice 

resource managers to use their forecasts (Hartmann et al. 2002b). In comparison, water 

supply forecasting grew out of its demand and that its links to its users are well 

understood, and its users satisfied (Lettenmaier 2004). Nonetheless, very long-range 

streamflow forecasts are likely to be much more uncertain than the traditional semi-

deterministic forecasts and will require a format that more effectively communicates 

probabilistic information. In this regard, climatologists have more experience than 

hydrologists do.  
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Finally, there are parallels between the overall evolution of forecast tools in 

climatology and hydrology. Both fields have a tacit respect for the forecaster who 

understands physical processes and relies on intuition. The master climatologist is skilled 

at visualizing the evolution of features on a pressure height chart and the master 

hydrologist is intimately familiar with the character and features of a basin, and has an 

intuitive feel for, for example, the non-quantified effects of long-term soil moisture 

deficits. Both fields also recognize that intuition cannot be the only source of guidance 

and there is a need to quantify and objectify. Although statistical forecasting techniques 

are the mainstay of both operational environments, they are looked at as temporary 

measures on the road to the eventual goal of full simulation modeling. Simulation models 

are resource intensive, difficult to run and require significantly more care and feeding 

than statistical tools. One potential advantage of simulation models is their ability to 

manage situations outside historical experience (e.g., climate change, major landcover 

changes). Their adoption will not bring a quantum leap in operational skill in all 

situations although model improvement is a major thrust of the research community and 

will likely continue to be so in the foreseeable future. The formation of the IRI, a separate 

entity committed to seasonal forecasting using simulation models, represents an 

interesting development in the operational climate modeling gridlock. Hydrologists 

should track the activities of this agency and learn from its modeling experiences. One 

can only speculate if users would benefit from a similar public institution devoted to 

multi-model hydrologic simulation modeling.   
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Figure 4.1. Example CPC seasonal climate outlook issued October 16th 2003 for 
November-December 2003 precipitation. “EC” indicates an “equal chances” forecast 
whereas the area within the “B 40” contour has a 40% chance of falling in the dry (below 
normal) category, a 33% chance of near-normal and a 27% chance of wet (above 
normal).  
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5. HISTORY OF LINKING OPERATIONAL CLIMATE FORECASTS AND 

WATER SUPPLY FORECASTS 

 

5.1 Introduction 

 

 While there are significant contrasts between the operational climatology and 

hydrology environments, hydrologists have long recognized the potential gain in using 

climate information and forecasts. This chapter reviews the use of climate information in 

operational water supply forecasts at the Natural Resources Conservation Service's 

National Water and Climate Center. The use of climate information in other operational 

hydrologic forecasting agencies, such as the National Weather Service and the Salt River 

Project, are also highlighted. This review focuses on three main periods, from early 

attempts to link climate and water supply forecasts, through the period of widespread 

operational use of climate indices in NRCS forecasting equations, and finally the recent 

age of greatly expanded climate forecasting efforts. Chapters 4.2.2 and 4.3.2 traced the 

evolution of forecast tools in individual disciplines, whereas this chapter traces the 

evolution of linkages between the disciplines. The results from this chapter are used to 

focus and place in context the results of investigations in chapters 7-9.  
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5.2 Early history (1935-1983) 

 

Taking advantage of seasonal climate forecast skill has been a long-standing 

moderate to high priority within water supply forecasting agencies.  Church’s (1935) 

seminal publication about snow surveying and water supply forecasting identifies 

precipitation variability during the runoff period (after forecast issuance date) as the 

largest source of forecast error.  Schaake and Peck (1985) estimate that for the 1947-1984 

forecasts for inflow to Lake Powell, almost 80% of the 1 January forecast error is due to 

unknown future precipitation; by 1 April, Shaake and Peck find that future precipitation 

still accounts for 50% of the forecast error. 

There has also been a long history of attempting to incorporate seasonal climate 

forecasts into operational water supply forecasts.  The NWS (then called the US Weather 

Bureau) started creating bi-monthly 30-day weather outlooks for internal use in 1943.  In 

1953, they began issuing these forecasts to the public.  Shortly afterwards, the Columbia 

Basin Interagency Committee (of which the NRCS was a member) evaluated their 

usefulness in forecasting Columbia River streamflow (CBIAC 1955).  This report 

concluded that the potential benefit was great but that the actual skill was too low for 

practical use.  Specifically, the report was concerned about the increased chance of 

incurring a major forecast “bust” when using the climate forecasts versus existing 

practices (i.e., assuming near-normal future precipitation).  A later report (CBIAC 1964) 

revisited the issue and found that forecast skill was improving, but it was still not 
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satisfactory for operational considerations, particularly when applying the climate 

forecasts to geographically small basins (i.e., “downscaling”).  

The 1970s were an active period in climate and water supply forecasting.  

Although produced internally since 1958, the first seasonal (i.e., 90-day) temperature 

forecast was released to the public in 1974, with the first seasonal precipitation outlook 

following in 1978.  As part of the long-range streamflow forecasting “Project 

Hydrospect”, which began in 1971, William Arvola of the California Department of 

Water Resources (CDWR) reviewed all historical and ongoing research in seasonal 

climate forecasting (Arvola 1975; Peters 1984).  In the fourth year of Project Hydrospect, 

CDWR began sponsoring research by the famed climatologist Jerome Namias, then at the 

Scripps Institution of Oceanography.  The technical linkages between climate and 

streamflow forecasting in California grew in sophistication (Zettlemoyer 1982).  These 

activities also inspired Jim Marron, an operational NRCS water supply forecaster, to use 

the Southern Oscillation Index to forecast streamflows around Lake Tahoe and in Nevada 

beginning in 1976.  Marron soon abandoned the practice because of the Southern 

Oscillation Index’s lack of predictive skill in that region (James Marron, personal 

communication, May 2003). 

Among the several other early attempts to use climate information in water supply 

forecasts, Schaake (1978), in northern Virginia, used the 30-day precipitation outlook in 

October 1977 to remove a series of “anti-analogues” from the available ESP input 

meteorological traces.  Similarly, in the mid-1980s, Croley and Hartmann (1987) used 

climate outlooks subjectively to alter ESP traces in forecasting Great Lakes levels.  This 
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method has evolved into the objective procedures described by Croley (2000).  In 

managing Lake Okeechobee, the South Florida Water Management District also employs 

this climate outlook-weighted ESP forecasting technique (Cadavid et al. 1999).  The 

NWS currently has a variety of procedures for climate-weighting its ESP traces, ranging 

from a simple technique developed in 1995 by Larry Rundquist at their Alaska River 

Forecast Center (Werner et al. 2004) to the complex method of Perica et al. (2000). The 

Colorado Basin River Forecast Center is currently testing no less than five different 

methodologies for climate-weighting its ESP traces (David Brandon, personal 

communication, October 2003). Most recently, in a non-operational environment, Hamlet 

and Lettenmaier (2000) are routinely producing real-time climate-weighted ESP traces 

from an advanced spatially distributed hydrologic simulation model for basins in the 

western US.  Similarly, the WaRSMP software package offers climate-based subsetting 

of its routine but non-operational ESP traces (Douglas Boyle, personal communication, 

April 2003). WaRSMP is a United State Bureau of Interior effort to link hydrologic 

simulation models with reservoir optimization models in an operational setting.  

Just as the 1982-1983 El Niño was a focusing event for the climate community,  

the 1983 Colorado River flood was equally focusing for the water supply forecasting 

community (Rhodes et al. 1984).  Until April 1983, snowpack on the Colorado River 

basin was near average, and the median forecasted inflow to Lake Powell was similarly 

near average (109%).  An exceptionally cold and wet spring ensued, followed by a rapid 

warming.  The observed April-July flow, at over 210% of average, overwhelmed the 

already full reservoir system.  Glen Canyon Dam sustained severe damage to its spillway 



 

117

tunnels because of the high volume of water it was passing.  The integrity of the dam was 

threatened, and plywood board extensions were added to the top of the spillway gates to 

hold back the flow.  As subsequent analysis revealed (Pagano et al. 1999), this 

simultaneous occurrence of an exceptional El Niño and an exceptional flood remains 

imprinted in the institutional memory of water managers in the region. 

 

5.3 Routine use of climate indices (1983-1995) 

 

Interest in climate and streamflow grew throughout the 1980s, spurred on by 

research characterizing El Niño’s global and regional impacts, such as Ropelewski and 

Halpert (1986, 1987).  Cayan and Peterson (1989) investigated El Niño and Western US 

streamflow, which coincided with work being done by Redmond and Koch (1991) on the 

same topic.  David Garen, one of Koch’s students at the time, was also an operational 

water supply forecaster with the NRCS.  Garen began using the Southern Oscillation 

Index (SOI) as a predictor variable in forecasting Columbia River Basin streamflow.  

Around the same time, in 1988, Tom Perkins, also an NRCS forecaster, began using SOI 

as a predictor in the Lower Colorado River and southern New Mexico (Tom Perkins, 

NRCS National Water and Climate Center, personal communication, May 2003).  During 

this period, many other hydrologists, including counterparts in the NWS, were skeptical 

that factoring in El Niño information sufficiently increased water supply forecasting skill 

and did not adopt this practice until later. Robert Hartman, however, transferred to the 

NWS Colorado Basin River Forecast Center (CBRFC) in 1990 after being an NRCS 
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forecaster during Perkins’ and Garen’s activities. At CBRFC, Hartman continued 

investigating the climate-streamflow connection and generally found discouraging 

calibration results in all areas except the Lower Colorado (Robert Hartman, California 

Nevada River Forecast Center, personal communication, May 2003).  

Although myriad research publications about El Niño and streamflow appeared 

(e.g., Cayan and Webb 1992; Kahya and Dracup 1993; Piechota et al. 1997; among many 

others), operational hydrologic forecasting procedures generally remained unchanged for 

several years.  The Salt River Project (SRP), a central Arizona water manager and a 

coordinator in the water supply forecasts, adopted the “Entropy Limited” precipitation 

model (Christensen and Eilbert 1985) in 1988. Although this model is proprietary, it 

appears to be conceptually similar to the statistical multiple discriminant analysis model 

of Young and Gall (1992).  Young and Gall’s model uses air temperature and 

precipitation data at many global sites to produce probabilistic estimates of central 

Arizona precipitation and runoff.  SRP developed a post-processor to convert the 

probabilistic forecast into a deterministic forecast (Reigle 1998).  SRP also conducts 

extensive statistical analysis of climate and winter streamflow (Skindlov et al. 2000), 

which are used to support water supply forecast activities.  SRP hydrologists, like most 

operational water supply forecasters, consult the official Climate Prediction Center (CPC) 

seasonal outlooks and use them at least qualitatively. 
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5.4 A new age in climate (1995-2004) 

 

In 1995, climate forecasts changed significantly, both in terms of their creation 

and methods of display.  The format, which is still in use today, presents the forecasts as 

tercile probability anomalies for 13 overlapping 3-month forecast periods with lead times 

up to 1 year (see also chapter 4.2.1).  While more information is presented using the 

current format, the methods for directly incorporating the climate forecasts have 

increased in complexity.  In particular, disaggregating the overlapping 3-month periods 

into monthly values produces undesirable artificial “ringing” (e.g. filtering of the data 

produces an artificial periodicity in the data, particularly near sharp boundaries, Wilks 

2000a).  For example, a wetter than normal January-February-March forecast, followed 

by February-March-April and March-April-May climatology forecasts may counter-

intuitively imply a drier than normal 1-month forecast for March. Although not 

statistically precise, Schneider and Garbrecht (2003) have developed an algebraic 

disaggregation that may be suitable for operational purposes.  Briggs and Wilks (1996) 

addressed the issue of quantitatively translating precipitation probability anomalies into 

shifts in precipitation amounts.  This methodology is conceptually similar to the 

underpinnings of the experimental “Probability of Exceedence” forecasts issued by CPC 

(Barnston et al. 2000, see also chapter 9.5).  Garen (1998) and Modini (2000) attempted 

to ingest these “probability of exceedence”-style forecasts into the regression-based 

streamflow forecasting framework with mixed success.  The procedure is complex, 

operationally intensive, and does not yield results significantly more accurate than simply 
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using a climate index (e.g., SOI) directly as a predictor variable in a regression equation. 

Interestingly, the procedure involves developing equations with “future variables”, a 

practice that fell out of favor at the NRCS in the 1980s (see chapter 4.3.2).  

Another climate index of importance in western water supply, recently developed 

by Mantua et al. (1997), is the Pacific Decadal Oscillation (PDO).  This index describes 

decadal-scale sea surface temperature variations in the north Pacific (see also chapter 

3.3).  Originally related to fluctuations in the salmon fishery, it has subsequently been 

shown that it has a modulating effect on the El Niño / La Niña climate signal.  The phase 

of the PDO (cool or warm) has a significant effect on the strength of the relationship of 

the SOI with winter and spring streamflow in western Washington and Oregon, the 

relationship being much stronger during the cool phase than during the warm phase of the 

PDO (Koch and Fisher 2000).  By splitting the data record into cool-phase and warm-

phase years, Koch and Fisher (2000) developed separate regression forecasting 

procedures to account for this effect.  This method, however, has not yet found its way 

into operational forecasting, in part because of the difficulty in knowing the PDO phase 

in real-time (see also chapter 8.2). While PDO may excel at explaining long term 

variability in the historical record, the forecaster is left wondering which phase of the 

cycle is relevant to the impending streamflow forecast season (i.e., “Has the PDO shifted 

or not?”). For example, debate still exists about whether the PDO shifted some time in 

the late 1990’s.  

When the very strong 1997-1998 El Niño occurred, attention was yet again 

refocused on climate and seasonal water supply issues (Pagano et al. 2000, 2001, and 
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2002).  Comparisons between the 1997-1998 and 1982-1983 El Niño events alarmed 

water and emergency managers.  Forecasters responded with comprehensive statistical 

analysis of the historical impacts of El Niño (such as NRCS 1997; Brandon 1998) and by 

adding climate indices to streamflow forecast equations where appropriate.  Most 

significantly, the analyses revealed that there is not a reliable signal for El Niño in the 

Great Basin or the Upper Colorado River Basin above Lake Powell.  While the 1983 

event caused major flooding in this region, there are a greater number of counter-

examples where El Niño did not bring wetter than average conditions.  Research by the 

Bureau of Reclamation revealed an under-forecast bias for inflow to Lake Powell during 

El Niño years (Pagano et al. 1999).  Perhaps this may be related to El Niño favoring cold 

April-June conditions in the Upper Colorado River basin (Pulwarty and Melis 2001).  If 

true, then a streamflow forecast based on snowpack alone would underestimate the 

observed flows because runoff efficiency is increased during cold springs.  During spring 

1998, water managers responded to public and political pressure to prevent a repeat of the 

1983 event by releasing more water from their reservoirs than what would have been 

called for by using only the water supply outlooks.  In the end, the water supply forecasts 

did underestimate the observed flow into Lake Powell, but not by an exceptional amount 

compared to previous years.  Elsewhere, the forecasts accurately anticipated a wet season 

in Arizona and New Mexico and dry conditions in the Pacific Northwest.  

The most recent developments in the history of climate and western water supply 

forecasts are the 2001 La Niña and the ensuing Pacific Northwest drought. In the fall of 

2000, a strong La Niña was underway, combined with the cool phase of the PDO.  These 
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phenomena together provided the strongest possible climate-based indication that the 

Pacific Northwest would be wetter than average in 2001. For example, at the time, the 

driest of the other nine La Niña/cool PDO years since 1936 on the North Fork Flathead 

River near Columbia Falls (Montana) had April-September streamflow almost exactly 

100% of average; the wettest year on record, 1974, at over 160% of average, was a La 

Niña/cool PDO year.  Although official climate forecasts do not consider PDO-

precipitation relationships, a group at the University of Washington, among others, 

publicized a confident forecast for a wet winter.  Official climate forecasts were more 

conservative but still indicated a higher chance of a wet winter/spring. 

For a variety of subjective reasons, the NRCS did not issue any early season 

forecasts in the fall of 2000.  In the end, 2001 tied or broke records for the driest year on 

record in the Pacific Northwest, contrary to the climate forecast guidance. The North 

Fork Flathead experienced its third driest year on record at close to 50% of average flow. 

In retrospect, water supply forecasters felt that they had “dodged a bullet” by ignoring the 

climate forecasts.  Many streamflow forecasters have a “What about 2001?” anecdote 

readily available as a justification as to why they do not rely on climate forecasts more 

heavily (see also chapter 9.3). Although no one has documented the negative impacts of 

unofficial climate based streamflow outlooks during this episode, the event is imprinted 

on the institutional memory of Pacific Northwest forecast agencies. Despite this 

imprinting, surprisingly little, if any, retrospective analysis has been done on the failure 

of the climate forecasts during 2001.  
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5.5 Summary 

 

There are many examples of previous attempts to link climate and water supply 

forecasts throughout the history of the NRCS. If climate forecasts were perfect, their 

value to water supply forecasters would be immense. However, climatologists are only 

able to explain a relatively small (although non-zero) amount of observed precipitation 

variability. Hydrologists have had perennial concerns about low climate forecast skill, as 

well as low climate forecast spatial and temporal resolution. Nonetheless, especially since 

the 1980s, hydrologists have used the available climate forecast skill to improve existing 

waters supply outlooks in some cases. Methodologies to link the forecasts range from 

subjective hedging of water supply forecasts based on qualitative climate information, to 

the quantitative use of climate indices and forecasts in hydrologic regression forecasting. 

New developments in climate-based weighting of ESP traces may appear in coming 

years, but other methodologies for linking climate and water supply forecasts are 

relatively well established and suitably stable for the operational environment. 



 

124

6. HISTORICAL FORECAST ACCURACY 

 

6.1 Introduction  

 

 Unknown accuracy hinders the use of climate forecasts by some users. Some 

users may only have subjective notions of how good various types of forecasts are at 

different locations. In finding the place for climate forecasts in the operational hydrology 

environment, it is useful to evaluate each kind of forecast. This chapter provides a brief 

description of the quality and accuracy of climate forecasts. It follows with a longer 

analysis of observed water supply forecast skill. These results are necessary to assess how 

well the objective water supply hindcasts developed in the next chapter match the 

behavior of the official forecasts. These hindcasts will be used to measure the relative 

merit of using climate information in water supply forecasts (chapter 7), and to detect and 

diagnose long-term climate-induced trends in water supply forecast skill (chapter 8).  

 

6.2 Climate forecasts 

 

 Many authors (e.g., Livezey 1990; Preisendorfer and Mobley 1984; Wilks 2000b) 

have tracked the progress of the official climate outlooks. Therefore the reader in search 

of details is referred to their publications as well as the proceedings of the annual Climate 

Diagnostics Workshop, which includes a review of forecast skill every year. 



 

125

Hartmann et al. (2002a) is a particularly relevant work to water supply 

forecasters; the unique aspect of that study is its user-oriented approach. For example, it 

selects only those forecasts and lead times that would be relevant to water supply 

forecasting in the Western US. It found that precipitation forecast skill is modest in those 

regions where El Niño exerts a strong influence (i.e., the Pacific Northwest and Arizona) 

and low to negative skill elsewhere, such as Colorado, Utah, and Wyoming. Lower 

Colorado River region climate forecasts display excellent discrimination in that when wet 

conditions occur, there is a prevalence of forecasts for higher chance of wet conditions 

and vice versus for dry conditions. Upper Colorado (and presumably Great Basin) 

forecasts have poor discrimination because the forecasters rarely venture far from 

climatology or “Equal Chances” in their forecasts. Arizona forecasts have excellent 

reliability, indicating, for example, when the forecast says there is a 60% chance of wet, 

wet occurs about 60% of the time. In contrast, of the times that CPC has forecast 60% 

chance of upper tercile (wet) conditions in the Upper Colorado basin, upper tercile 

conditions have happened 0% of the time.  

In summary, climate forecasters are aware of the difficulty of predicting climate 

in the El Niño “dead zone” between 38-42 deg N latitude. As a result, they rarely issue 

any forecasts besides climatology in that region. The forecasts have fared poorly during 

those times CPC have issued non-climatology forecasts in this “dead zone”. Robert 

Livezey (personal communication, November 2002) has unpublished analysis showing 

that during El Niño and La Niña periods, the CPC forecasts have displayed skill. During 

non-Niño conditions, CPC’s skill is indistinguishable from that of a climatology forecast.  
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6.3 Water supply forecasts 

 

 The following chapters draw from Pagano et al. (2004b), the first comprehensive 

analysis of official water supply accuracy in the history of the NRCS. This chapter is also 

the first synthesis of the many NRCS “gray literature” publications concerning water 

supply forecast evaluation. 

 

6.3.1 History of previous evaluation studies 

 

Although the water supply forecasting community has long recognized the 

importance of forecast evaluation, it has also long struggled to find appropriate forecast 

evaluation measures. The challenge lies in normalizing the forecast errors in some 

fashion so as to allow fair comparison between large rivers and minor creeks. 

Additionally, one must find measures that are understandable and relevant to forecast 

users. The measures discussed and compared in this chapter are summarized in table 6.1. 

 The early history of the NRCS water supply forecasting program in the 1930s-

1950s contains many evaluations of individual forecast locations and years (e.g., Paget 

1940) similar to those put together for the informal water-year-end summary meetings for 

users that still occur today. Forecast bulletins as early as 1931 contain tables of the 

previous year’s forecasts and observations and include a text discussion of the 

performance of the forecasts. Very early evaluations aimed to establish the credibility of 

the water supply forecasting enterprise. 
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Name Form Source Advantages Disadvantages 
Year-end 
summary, 
percent 
error 

Tables of  
F and O.  
|F-O|/Ō  

Paget, 1940; 
Church; 
1935 

Direct 
relevance to 
user interested 
in one location. 
Simple. 

Difficult to 
know 
abnormality of 
forecast error. 
Cannot be 
compared 
across regions 

Forecast 
Error 

|F-O|/O Work, 1940; 
Work and 
Beaumont, 
1958; 
Shafer and 
Huddleston  
1984 

Same as 
percent error. 
More sensitive 
to errors when 
observation is 
low, the focus 
of agriculture. 

Same as percent 
error. If O = 0, 
error is infinite.  

Graphical 
evaluation 
analysis 

|F-O| normalized by 
the range of 
observations or 
long term flow, 
plotted as an 
exceedence. Area 
under curve is a 
“single number” 
measure 

Kohler, 
1959 

Allows 
comparison of 
different 
techniques. Is a 
measure of 
skill. Provides 
detail about 
distribution of 
errors 

More 
complicated. It 
is not 
necessarily 
clear what is the 
best way to 
compare 
forecasts across 
locations.  

Skill 
Coefficient 

Sum(|Ō – O|)/ 
Sum(|F – O|)  

Shafer and 
Huddleston
1984 

Allows 
comparison of 
different 
locations and 
techniques. Is a 
measure of 
skill. 

More 
complicated. 
Positive skill is 
unbounded, i.e. 
skill can equal 
positive infinity 
if F – O = 0 

Nash 
Sutcliffe 
(NS), 
Coeff. of 
Pred. 

1 – (Sum((F-O) 2)/ 
Sum((Ō – O) 2) 
 

Nash and 
Sutcliffe, 
1970; 
Lettenmaier, 
1984 

Allows 
comparison of 
different 
locations and 
techniques. Is a 
measure of 
skill. 

More 
complicated. Is 
more sensitive 
to extreme 
forecast errors.  

Error 
Variance 

1 - NS Schaake and 
Peck, 1985 

Same as NS Same as NS 

Table 6.1 Comparison of forecast evaluation techniques and measures presented herein. F 
indicates forecast, O indicates observed, Ō indicates the long-term mean of the observations.  
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 In the earliest such evaluation, Church (1935) computed the absolute difference 

between forecast and observation as a percent of long-term average runoff for six basins 

in Nevada and California. The exceptional result that two thirds of the forecasts had an 

error of less than 10% should be tempered by the fact that these forecasts were issued on 

15 May, the midpoint of the spring melt period. Additionally, the standard deviation of 

the observations in this region is typically one third of the average, indicating that a “no-

skill” forecast every year equal to the long-term average might produce errors of less than 

10% one fourth of the time (Appendix A).  

 In 1944, the NWS and the NRCS began publishing forecasts independently for 

many of the same locations. Pressure was put on the agencies to coordinate their 

forecasting programs to prevent the duplication of effort and to head off the problems 

natural resource managers would face when confronted with conflicting forecasts (e.g., 

Medford Mail Tribune 1959). The agencies could not agree on the best forecasting 

method, with the NRCS favoring the use of snow survey data, and the NWS favoring 

low-elevation accumulated precipitation data. While efforts to institutionalize 

coordination failed in 1956, regional pockets of coordination continued informally. Most 

forecast evaluations between 1945-1960 were motivated by a desire to show the 

superiority of the forecasts of one agency over another. 

 Work and Beaumont (1958) performed a westwide evaluation of NRCS and NWS 

forecasts (1944-1952), including three tables of analysis arranged by state, basin, and 

year. Forecast error was defined as the forecast flow divided by the actual flow, 

expressed as an absolute difference from 100% (after Work 1940). The authors also 
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averaged together the historical forecasts by the various agencies to determine which 

agency would have benefited by coordination. Finally, the authors presented time series 

of which agency had the majority of “best” forecasts by year and a map of which agency 

performed best overall at each location. In aggregate, NRCS forecasts were “better” than 

NWS forecasts 11 out of 13 years of the evaluation. The NRCS forecasts were “better” at 

55% of the locations, although there was no obvious spatial pattern to the performance of 

the agencies. The authors concluded that snow survey data produce superior streamflow 

forecasts, as snow is the source of most of the water (see also chapters 2.2-2.3).  

 Kohler (1959), chief research hydrologist of the NWS, rebutted this study using a 

different, graphical evaluation technique that was in use by Soviet hydrologists at the 

time (figure 6.1). First, the absolute difference between each forecast and observation 

was expressed as a percentage of the range of the observations. These differences were 

ranked and plotted as a probability of non-exceedence. A second curve was displayed 

based on the differences between each observation and the long-term mean, again as a 

percentage of the range of the observations. If desired, several curves based on the 

forecasts from different agencies or lead-times could have been overlain and the 

performance compared (as was done in CBIAC 1961, 1964). The area under each error 

curve was a measure of forecast performance (small area being good).  

 Although not necessarily intuitive to a user, this technique had many appealing 

aspects in that one could visualize the distribution of errors as well as compare the skill of 

the forecasts relative to a baseline (such as climatology or always guessing average). 

While the formulation was not exactly the same, the area between the line for the 
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performance of the forecasts and the line for the performance of the long-term mean 

approached the spirit of the Nash-Sutcliffe Coefficient of Efficiency (NS, Nash and 

Sutcliffe 1970). Using this new forecast evaluation measure, Kohler concluded that the 

NWS’s early season forecasts were far superior to those issued by the NRCS, yet 

conceded that the differences were slight later in the season.  

A lull in forecast evaluation activities followed until the 1980s. Internal NRCS 

records indicate a significant update of forecast archives and evaluation tables in 1968, 

although there is no documentation, beyond standard bookkeeping, of research on 

forecast errors supporting that update. Forecast evaluations at individual locations 

occurred in the research literature, oftentimes to compare the historical forecasts against 

new techniques being developed. It was not until the work of Shafer and Huddleston 

(1984) that a westwide look at water supply forecast evaluation was revisited. Shafer and 

Huddleston analyzed a database of close to 50 000 seasonal streamflow forecast errors, 

representing the complete history of NRCS forecasts except those from Alaska.  

It is difficult to identify the exact motivation of Shafer and Huddleston’s work. 

One objective is to measure changes in accuracy associated with the adoption of new 

technologies (e.g., the adoption of computers in the mid-1960s) and institutional changes 

(e.g., the collection of state forecasting responsibilities into a national center). Also, the 

introduction of electronic databases to the NRCS enabled the digitization of historical 

forecasts and a phasing out of the hard-copy tables that NRCS personnel had been 

maintaining for decades; when the digitization was complete, an evaluation seemed in 

order (Jon Lea and Ken Jones, Natural Resources Conservation Service, personal 
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communication, April 2003). In the early 1980s, the NRCS and NWS agreed to 

coordinate forecasts at locations where both agencies have forecast procedures, although 

it is unlikely that this inspired the forecast evaluation study. The large forecast error 

incident that occurred in 1983 at Lake Powell as a result of a very unusual late spring 

snow storm (Rhodes et al. 1984, see also chapter 5.2) did not motivate the evaluation, 

although it may have caused greater interest in and wider distribution of the results.  

 Following Church’s definition, as opposed to Beaumont and Work’s, Shafer and 

Huddleston calculated the average forecast error for 345 forecast locations and 

aggregated the results by state and lead-time. As expected, the forecast error decreased as 

the lead-time decreased. They also found an exceptional relationship (R2 = 0.966) 

between statewide average forecast error and the statewide mean coefficient of variation 

(the ratio of the standard deviation of the observed flow to the mean), as had Lettenmaier 

and Garen (1979) in their analysis of streamflow hindcasts several years earlier. In other 

words, it was easy to incur a 100% forecast error on, for example, the San Francisco 

River, Arizona, where observations varied between 17% of average to over 750% of 

average. It was more difficult to do so on a river such as the Stehekin River, Washington, 

where the streamflow ranged only between 60% and 150% of average. 

 Shafer and Huddleston also employed a unique “Skill Coefficient” score, the sum 

of the absolute differences between the long-term average and the observation in each 

year, divided by the sum of the absolute errors between the forecasts and observations. A 

score of 1.0 indicated no skill, and a score of 2.0 indicated that the forecasts were twice 

as skillful as climatology. Like Kohler’s work, this score was attractive because it enables 
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a normalized comparison across states. The analysis revealed that 1 April forecasts for 

the period of record until 1980 were most skillful in Arizona and Washington, fair in 

Nevada, Idaho, and Wyoming, poor in Colorado, New Mexico, and Utah, and least 

skillful in Oregon and Montana.  

Shafer and Huddleston qualitatively attempted to detect a westwide long-term 

change in skill, but none was apparent. Individual sites were becoming more skillful, 

others less skillful. The authors stated that the observations displayed a trend towards 

increasing variability, and when one subtracted out this effect (based on the analysis in 

the paragraph before last), average forecast error decreased “virtually” by 2.2% in 1966-

1980 compared to 1951-1965 but decreased “actually” only 0.2%. In other words, had the 

streamflow variability not increased recently, the forecast error would have decreased by 

2% more than it actually did. Instead, the forecasters were challenged with a more 

variable (hence tougher to forecast) sequence of flows than what occurred in earlier years 

and forecast skill suffered. The authors inferred “a 10 percent relative improvement in 

forecasting skill in recent years compared to a long-term average”, although the source of 

that value is not evident in their analyses 

In the context of discussions of changes in forecast skill, Lettenmaier (1984) 

deflates hopes of measuring the expected 6% increase in forecast accuracy (and 

multimillion dollar annual benefit to the economy) associated with satellite snow cover 

information. Lettenmaier shows that it would take more than half a century to accumulate 

enough forecasts to detect such a small accuracy trend with confidence. While 
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Lettenmaier evaluates synthetic forecasts and not historical forecasts, he uses the NS 

score, calling it the Coefficient of Prediction.  

Schaake and Peck (1985) used a similar score, called the error variance (1 – NS), 

in an analysis of forecasts during 1947-1984 for the inflow to Lake Powell, on the 

Colorado River in Utah. In an attempt to determine the most lucrative avenue for 

improving streamflow forecasts, the authors decomposed the errors into climate, data, 

and model based error (Lettenmaier and Garen [1979] explored this issue as well). 

Climate based errors could be addressed by having accurate seasonal forecasts of 

precipitation and temperature. Data based errors are rooted in the density of the data 

monitoring network, location of sites, and the quality of the data. Improving forecast 

tools and techniques could reduce model-based errors. Schaake and Peck concluded that 

almost 80% of the 1 January forecast error was due to unknown future climate; by 1 

April, future climate still accounted for more than 50% of the forecast error. Model and 

data errors were approximately equal and were steady throughout the season.  

 While water supply forecast evaluation ceased after the mid-1980s, the climate 

and weather forecasting communities reached new heights of complexity in forecast 

evaluation. Long-lead climate forecasts were originally issued categorically, e.g., “Above 

normal”, and the community has no less than 19 categorical evaluation measures at their 

disposal, with the Heidke Skill score (Heidke 1926) as the most popular in operational 

circles. With the transition to probabilistic climate forecasts in the 1980s, probabilistic 

forecast evaluation scores such as the Brier Score (Brier 1950) and Ranked Probability 

Score (Epstein 1969) gained popularity. The most sophisticated evaluations involve 
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distribution-oriented approaches (reliability and discrimination diagrams, Wilks 1995) 

and measures of the value of the forecasts to a theoretical optimal decision-maker. 

Regrettably, the robustness and scientific rigor of forecast evaluation techniques are 

inversely proportional to their accessibility and understandability by the lay forecast user. 

The current challenge is in linking the forecast evaluation to the user in a meaningful and 

relevant manner (Hartmann et al. 2002a).   

 

6.3.2 Selected evaluation methodology 

 

 Although past NRCS forecast evaluations focus on the average percent error, and 

this measure is the most easily understandable by users, this study did not use it. It 

primarily measures the local variability of the observations and not the value added by 

the forecaster. Instead, the forecasts were judged by the NS score: 
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where fi and oi are the forecast and observations in year i for a collection of N years, and 

ō is the mean of the observations of N years. An NS of 1 is perfect, 0 indicates no skill 

over always guessing average, and values less than zero indicate negative skill. In 

essence this score is one minus the mean squared error of the forecasts divided by the 

variance of the observations. It is important to note that this skill score already accounts 
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for changes in forecast skill associated with changes in variability of observations (this 

issue will become important in chapter 8, especially chapters 8.4-8.6). During periods of 

high variability, the potential for greater forecast error is offset by increased error in the 

“no skill” baseline forecast of guessing average.  

Although not necessary, it is useful to avoid situations of heteroskedastic error, 

such as where the forecast error is typically greater during high flows than low flows. 

Among those locations where the seasonal flow volumes have skewness greater than 1.0, 

the natural logarithm is applied to the forecast and observed seasonal totals before 

analysis (see Table 2.4). Otherwise, individual large floods would dominate the analysis, 

resulting in an evaluation reflecting the behavior of the streamflow in a few years rather 

than the quality of the forecaster on the whole. For example, the 1 January 1993 squared 

forecast error for the San Francisco River, Arizona was almost 110 times the median 

squared forecast error over the period of record even though it was, by far, the wettest 

forecast ever issued for this location. Instead, analysis of log-transformed flows provides 

more information about the performance of forecasts across a range of streamflow 

conditions. In this study, the transformation increased the skill scores (e.g. San Francisco 

January NS was 0.64 if the data were transformed and 0.54 if it was not). This 

transformation shifted the forecast evaluation emphasis to drought, which is the primary 

concern of NRCS agricultural customers in semi-arid regions (as opposed to NWS 

customers concerned with the protection of lives and property from floods). Further, 

droughts (FEMA 1995) cause approximately 3-4 times the annual economic damages of 

floods (Myers 1997) and therefore any impacts-oriented forecast evaluation may prefer to 
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give more emphasis to performance during dry years. Although this study did not attempt 

to link forecast accuracy to user benefits, the log transformation of skewed flows 

increased the user-relevance of the evaluation.  

  

6.3.3 Historical water supply forecast evaluations 

 

The evaluation of the historical forecasts as a function of location and lead-time is 

presented below. A limited number of factors that shape forecast performance in a 

general sense are identified and examined, with examples from individual years. Forecast 

accuracy is explored further in chapters 7 and 8. 

Figures 6.2 contains maps of the NS score for the forecasts issued in the most 

recent 20 years, 1983-2002. The top and middle maps indicate the performance of the 

forecasts issued 1 January and 1 April, respectively. The size of the circle reflects the 

skill of the forecasts, large being preferable over small. The outermost circle is a 

reference to perfect skill (NS=1), and an empty circle indicates no skill (NS=0). The 

hollow circle over the Sandy, Oregon in the top panel indicates that 1 January forecasts 

had slightly negative skill. The bottom panel reflects the change in forecast performance 

(NS) between 1 January and 1 April. Large inner circles indicate great forecast 

improvement, and the hollow circle in Arizona shows a decline in skill for the Verde, 

Arizona 1 April forecasts compared to those issued 1 January. The outer circle is a 

reference for a change in NS equal to 1.0.  
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 During 1983-2002, the most skillful 1 April forecasts were issued for the Salt, 

AZ, West Walker, CA, and Little Colorado, AZ, whereas the least skillful forecasts were 

for the Umatilla, OR, White, CO, and Sandy, OR. The most improvement in skill 

between January and April occurred for the West Walker, CA, Carson, NV, and Martin 

Ck, NV, and the least improvement occurred for the Verde, AZ, Animas, CO, and White, 

CO. The westwide average NSs in January through April from 1983-2002 were +0.36, 

+0.53, +0.59, and +0.65, respectively.  

Figure 6.2 shows the westwide average forecast skill versus issue month for 1983-

2002. Skill was lowest but generally positive in January and steadily improved 

throughout the season. This result is intuitive in that in January the character of the 

seasonal precipitation has yet to reveal itself. For many locations in the Western US, 

snowpack is at its peak on or around 1 April, and there are fewer opportunities for 

dramatic changes in the amount of available water in the basin.  

This is not to say that significant changes cannot occur after 1 April. A notable 

example of this occurred in the Colorado River basin in 1983 (as mentioned in chapter 

5.2). Until April 1983, snowpack was near average, and the median forecasted inflow to 

Lake Powell was similarly near average (109%). An exceptionally cold and wet spring 

ensued, followed by a rapid warming. The observed April-July flow, at over 210% of 

average, overwhelmed the already full reservoir system. Perhaps a less well-known 

example, the Animas basin had extremely low snowpack on 1 April 1999 after an 

exceptionally warm March, and the median streamflow forecast was approximately 40% 

of average. Near-record rain fell in April-May, and the snowmelt pulse volume was near 
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to above average. A monsoon of unprecedented strength, however, produced summer 

floods. April-September streamflow totals were close to 140% of average. Although not 

one of this study’s basins, Ponil Ck nr Cimmarron, NM (USGS id 07207500) to the 

southeast had a forecast of 20% of average in the same year and the eventual March-June 

flow was over 370% of average.  The five largest 1 April errors in the database, defined 

as the squared difference between the forecast and observed, divided by the long-term 

observed variance, were (beginning with the largest first): Animas, CO, 1999; Verde, AZ, 

1988; Sandy, OR, 1981; Bruneau, ID, 1963; East, CO, 1957. These were all due to low 

snowpack conditions followed by exceptional storms.  

While these examples represented large underforecasts, causes for overforecasts 

tended to be more complex. The two largest forecast overestimates (Yellowstone, MT, 

1949; Weber, UT, 1936) were due to moderate snowpack being followed by hot, dry, 

windy weather (i.e. intense sublimation). The Lamoille, NV, 1943 error, however, is 

more difficult to interpret. In this case, forecasters overestimated the effects of a high 

water table, and this very small high-elevation basin seemed to be in a dry microclimate 

surrounded by heavy snows. The streamflow data were also questionable because a series 

of floods had recently occurred, possibly affecting the instruments and rating table 

(Church and Boardman 1944).  

Forecast error in any given year is strongly related to the character of precipitation 

that falls subsequent to the forecast issue date. Similarly, one might expect the average 

increase in forecast skill between January and April to be proportional to the percentage 
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of precipitation that typically falls in January, February, and March. The following 

analysis determined if the operational forecasts displayed this characteristic. 

The streamgage coordinates and a 1-km digital elevation model (HYDRO1k; 

http://edcdaac.usgs.gov/gtopo30/hydro/namerica.html) were used within a geographic 

information system to delineate the 29 basins of this study. The long-term 1961-1990 

climatological average PRISM precipitation for each month was calculated within each 

basin’s boundaries. The long-term normal January-March precipitation was then divided 

by the average seasonal total precipitation, beginning in January. For example, if the 

water supply forecast target season was April-September, “seasonal precipitation” meant 

January-September (or January-July if the target season is April-July). A high value 

indicated that a large portion of the streamflow-relevant precipitation typically fell in 

January-March, and the spring was a climatologically dry period. A moderate value 

(~40%) indicated a relatively flat seasonal cycle to precipitation, and a very low value 

indicated that most precipitation tended to fall in the spring and summer. Arizona rivers 

were withheld from this analysis, as their target period shrank as the season progressed, 

and a smaller target was not necessarily easier to hit. This chapter investigates the 

relationship between the typical improvement of forecast skill versus leadtime and the 

typical amount of precipitation falling in winter. Section 8.7 will relate forecast error in 

individual years with unusual springtime events.  

The strength of the correlation between average forecast improvement and the 

climatological cycle of precipitation in Figure 6.3, as expected, was relatively strong (R = 

0.64). The river with the greatest improvement in skill between January and April was the 
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West Walker, CA, because 46% of the annual precipitation fell in January-March, 

compared to only 17% that fell in April-July. In comparison, the Tongue, WY showed 

little improvement in skill by April, in part because April-June in the Plains states was 

usually the wettest time of year. The Animas, CO showed the least improvement of any 

basin outside Arizona due to the aforementioned 1999 event and because the basin was 

under the influence of the summer monsoon; the recent operational switch of forecast 

target periods from April-September to April-July may address some of this problem. 

The outlier (filled triangle) in the upper left corner of the diagram was the Bruneau, ID; 

as the target season began in March, observed March flow for this location was known in 

real-time. On 1 April, the forecaster was given an artificial advantage because part of the 

target season was in the past and therefore known with complete confidence. This 

explanation may not entirely suffice because the Pecos River near Pecos, NM similarly 

has the advantage of having part of its verification period in the past, yet does not have 

the same inflation in skill. Perhaps this advantage may be offset by the skill degradation 

associated with the Pecos, like the Animas, being affected by the summer monsoon.   

The other exceptions to this rule, in the lower right corner of the diagram as 

hollow circles, were the four rivers in Oregon that did not improve as much as expected 

versus lead-time. Most snowmelt-dominated basins around the Western US have a strong 

seasonality in streamflow, with low baseflow from September to March, a rise in late 

spring, a peak in summer, and recession in the fall. For the East River, CO, only 5% of 

the January-September streamflow typically occurred in January-March. In contrast, 

Oregon basins experienced a mix of rain and snow and have displayed “peaky” 
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hydrograph behavior (i.e. transient short-duration rainfall-runoff events) during the 

winter. On average, 47% of the January-September flow on the Sandy River typically 

occurred in January-March (43%, 42%, and 37% for the Umatilla, Malheur, and Rogue, 

respectively). It is possible for a large snowpack in February to be wasted away by March 

rains and run off before the April-September forecast target period begins.  For example, 

on 1 February 1996, the Sandy watershed had near-average snowpack and near-average 

streamflow forecasts. Warm temperatures and heavy rains caused major flooding and 

resulted in February’s streamflow being 260% of average. By 1 April, the snowpack was 

50%-60% of average, and the eventual April-September flow was among the driest third 

of record. The special challenge of seasonal streamflow forecasting in Oregon is evident.  

Given this information, a measure of “expected forecast skill” could be derived 

from climatological parameters and compared with the jackknife calibration error of the 

forecasting equation to detect possible over-fitting. Spring precipitation in the context of 

the seasonal cycle would be the primary driver of forecast improvement versus leadtime. 

Secondary information may include an index of winter runoff relative to annual runoff; 

this ratio may be related to temperature. Future research may indicate what other factors 

are relevant to expected forecast skill.  

 

6.4 Summary  

 

 As evaluated by others, climate forecasts are least skillful in the Upper Colorado 

River Basin and Great Basin, during summer, and for years not affected by ENSO events. 



 

142

They perform best in the Southwest US and Pacific Northwest, during the cold seasons 

and for El Niño or La Niña years. Temperature forecasts perform better than precipitation 

forecasts.   

The water supply forecast evaluations presented herein reconfirm past analyses 

and the intuitive notion that forecast skill generally increases as lead-time decreases. The 

increase in skill between January and April is directly related to the proportion of 

seasonal precipitation that typically falls in January-March. Therefore, regions such as 

California, with relatively compressed precipitation seasons, see dramatic increases in 

forecast skill between January and April. The exceptions to this rule are mixed snow-rain 

basins in the Pacific Northwest. Even if January-March accounts for a large percentage of 

the seasonal precipitation, where winter streamflow comprises a significant portion of the 

annual streamflow, 1 April forecast skill could be low.  
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Figure 6.1 Graphical forecast evaluation technique used by Kohler (1959). The forecast 
error (absolute deviation of forecast from observed) as percent of the long term average 
flow is presented as exceedence curve. Shown are the SCS (NRCS) and WB (NWS) 
forecasts issued 1 April for all locations from 1947-1957. The long term normal (naïve 
baseline) curve is also shown. That the agency forecast curves are below the naïve 
baseline curve indicates they are skillful. SCS also displays a tendacy for having smaller 
low-magnitude errors as well as having larger high magnitude errors. The WB, in 
contrast, has a less variable error distribution.  
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Figure 6.2 Skill of 1983-2002 
water supply forecasts issued 1 
January (top) and 1 April 
(center). Forecast improvement 
between January and April is 
shown in the bottom panel.  
Large filled circles indicate 
high skill or great 
improvement. 
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Figure 6.3. Box diagram of forecast skill versus issue 

month for the 29 basins during 1983-2002. Skill is 

measured by the NS score, with NS=1.0 indicating perfect 

skill and NS<0 indicating negative skill. The box has lines 

at the lower quartile, median and upper quartile values. 

Individual sites outside this range are shown as dots. 
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ure 6.4 1983-2002 Forecast skill improvement between 
uary and April, as a function of the climatological average 
uary-March precipitation, relative to the full seasonal (January 
ough the end of the forecast target period) precipitation. Large 
ues on the X-axis indicate most precipitation typically falls in 
 winter and small values indicate a relatively flat seasonal 
le to precipitation. Hollow dots are basins within Oregon and 
 triangle is Bruneau, ID (see text for discussion).  
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7. RELATIVE MERIT OF USING CLIMATE INFORMATION IN WATER 

SUPPLY FORECASTS 

 

7.1 Introduction  

 

Previous chapters have reviewed past studies of climate and Western US 

streamflow. A sound scientific basis exists for the linkage between climate and water 

supply forecasts. The question remains, what are the specific quantitative benefits of 

using climate information in NRCS hydrologic outlooks? The relative benefit of climate 

information can be assessed by conducting sensitivity tests on an objective water supply 

forecasting system that mimics the behavior of the official forecasts. The change in skill 

of the “synthetic hindcasts” that include climate information, versus those that do not, is a 

rough indication of how operational forecasts might improve with the broad adoption of 

climate information. This system can also be used to explore the potential skill of 

forecasts with longer leadtimes than those currently issued. The following chapters 

develop, evaluate and apply such a synthetic hindcasting system. This system will also be 

used in chapter 8 to detect and diagnose long-term variability in water supply forecast 

skill.  

Sections 7.2-7.6 outline the construction of a synthetic hindcasting system for the 

29 forecast points described in chapter 2.7, and chapter 7.7 discusses its strengths and 

weaknesses compared to the official forecasts evaluated in chapter 6.3. Section 7.8 

describes the results of the sensitivity tests including versus excluding climate 
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information. As a matter of terminology, the words simulated or synthetic “hindcasts” 

and “forecasts” are used interchangeably to describe the objective guidance provided by 

the system described herein.   

 Figure 7.1 is provided as a visual guide to the hindcast development process.  

 

7.2 Synthetic hindcast development 

 

Each basin is delineated in a Geographic Information System (GIS) framework 

using the USGS station location and the USGS “Hydro1k” 1-km resolution digital 

elevation model. To be eligible for analysis, a meteorological data site must be within a 

basin or within 35 km of its boundary (figure 7.2). The forecaster desires a mix of high 

quality sites with long-term records that capture the behavior of the snow at a variety of 

elevations. At the same time, he tries to avoid far-away sites that in an individual year 

may be affected by a micro-scale climate feature and not reflect actual snow conditions 

within the basin. Although no firm guidance exists on how far a site can be from a basin 

and still be considered in operational forecasting, 35 km is a fair approximation for what 

is done in practice. Of the over 180,000 stations in the COOP network, 387 have 20 or 

more years of data and are within 35 km of the study basins. Of the nearly 3000 

snowcourse and SNOTEL measurement sites in the Western US, 674 sites are with 35 

km of the study basins and have more than 20 years of data.  

Separate streamflow hindcast configurations were developed using monthly snow 

data and accumulated precipitation data. The first system most resembles the NRCS 
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forecast of the 1950s whereas the second resembles a system in use at the NWS during 

the same period (Work and Beaumont 1958). A third system that used persisted (i.e., 

September-November) streamflow as a proxy for soil moisture conditions had such poor 

results that they are not shown here. Although persisted streamflow correlations are very 

low (r ~ 0.3-0.5), they behave in such a way that they can lead to highly negative skill 

forecasts. For example, in almost all years, fall streamflow data can reflect baseflow 

conditions, which in turn reflect long term soil moisture deficits, but they can also reflect 

anomalous rare transient fall storms (e.g. a hurricane) that may or may not contribute to 

the following season’s water supply. In this case, a regression equation would overreact 

to the fall streamflow that was an order of magnitude or larger than any other year on 

record, yielding highly negative forecast skill. A fourth streamflow hindcast system using 

climate information is described in chapter 7.5. Lastly, hybrid snow-precipitation and 

climate hindcasts are developed in chapter 7.6.  

This experiment attempts to reproduce the characteristics and constraints of the 

existing operational environment. As is routine at the NRCS, the hindcast equations are 

developed using a “jackknife” technique involving the calibration of an equation on all 

but one historical year of data and then using the equation to “hindcast” the single year 

that was removed. This process is repeated leaving out each historical year in turn until a 

full set of hindcasts is obtained. A more realistic approach involves calibrating equations 

using data entirely in the past, namely that someone developing a forecast in 1957 would 

only have data available before 1957 and would not know about the behavior of the basin 

in, say, 1960 or 1983. Mason and Mimmack (2002) describe and use this “strict” 
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jackknife calibration approach; Unger (1996a,b) uses a slightly relaxed approach termed 

“bi-directional retroactive real-time validation” which involves the normal strict approach 

as well as a strict approach with the flow of time reversed.  

The uni-directional strict system was tested, but the simulated forecasts early in 

the period of record had a low correlation with the official forecasts in part because of the 

current inability to access data from “legacy” snow courses (mentioned in chapter 2.2). 

The hindcasts produced in the early part of the record were very unstable (i.e. based on 

such small calibration sample sizes that the forecast relationships changed dramatically 

with the addition of each year). Visual inspection of the observed and forecast time series 

revealed that the period of record skill (or lack thereof) was being dominated by these 

early forecasts. Given that the signal of climate in streamflow is subtle, the behavior of 

these few unstable forecasts may have dominated the sensitivity analysis, obscuring 

otherwise useful results. Although a very limited number of operational forecasts points 

suffer from high error due to small calibration sample sizes, this situation is not 

representative of the broader spectrum of forecast situations. Therefore, the strict 

jackknife approach was abandoned in favor of the weak jackknife approach described 

above.  

Finally, Garen’s (1992) principal components based-regression technique finds 

wide operational use, in part because it is very effective at dealing with the extremely 

high levels of inter-correlation among input variables. For example, in the upper Rio 

Grande headwaters, the correlation between 1 March SWE measurements for the Upper 

San Juan (06M03S) and Wolf Creek Summit sites (06M17S) is 0.95. Under normal 
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multiple linear regression, it is likely that highly correlated variables would compensate 

for one another. For example, it is possible that although both Upper San Juan and Wolf 

Creek Summit are strongly positively correlated with streamflow, one of these variables 

may receive a negative coefficient under multiple linear regression. In effect, small 

(likely random) differences between the two time series are such that giving one time 

series a negative coefficient may yield a marginally better calibration fit to the historical 

data. Having a correlation coefficient and regression coefficient of opposite signs is 

generally frowned upon because of the unpredictable outcomes that may result when one 

or another site is missing data (NRCS 2004). The principal components technique 

ensures that all sites for a variable within a basin that are highly inter-correlated have 

regression coefficients of the same sign (which are almost never negative). The technique 

adopted here reproduces this key feature of the operational technique, although it does 

not use the standard principal components approach primarily because of the restrictions 

it puts on the available period of record (discussed in the next section).  

 

7.3 Snow hindcast system  

 

This system uses the first of the month snow measurement as an indicator of 

future streamflows. The first necessary step is to aggregate individual snow 

measurements into a single basin-wide index. In the operational forecasting environment, 

the NRCS hydrologist would use a principal components analysis as outlined by Garen 

(1992). The operational technique involves a search algorithm that does an exhaustive 
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search of site and variable combinations. This technique has many benefits, such as its 

ability to deal with intercorrelation among predictor variables and its ability to find the 

optimal combination of predictors. However, it also has its drawbacks. Most notably, the 

period of record of the calibration data under the standard technique is the intersection of 

sites (i.e. all predictors must be serially complete). If one site of many is missing in a 

particular year, all sites for that year must be excluded from the analysis, despite the very 

strong correlation of that predictor with other predictors. For example, if snow site A has 

data from 1984-2003 and sites B-F have data from 1934-2003, the NRCS hydrologist’s 

calibration period must be 1984-2003 (20 years), as if no information were available 

about 1934-1983 (50 years). In this example, less than one-third of the available data are 

being used. In practice, the hydrologist would probably discard the site with the short 

period of record.  

Operationally, the hydrologist must balance making sure that all processes that 

affect the basin are represented, having complete geographic coverage of sites within the 

basin, having a long period of record for calibration and having an interesting mix of 

years, including years with large unavoidable forecast errors (such as extreme spring 

precipitation events). This last issue is an acute vulnerability of the operational search 

algorithm because it favors combinations of variables with missing data in extreme years 

because the summary skill score would be lower if those extreme years were included.  

This study requires a modified version of the operational approach to satisfy its 

objectives. To investigate decadal variability, a very long period of record of forecasts is 

necessary. Therefore, the approach must use the union of the available data, rather than 
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the operational approach involving the intersection of data. This approach must also take 

a collection of stations, emphasize those whose data are good predictors of streamflow 

and produce a representative basin-wide time series of that variable. Finally, this 

approach must be almost entirely objective, based on a limited set of fixed rules, so that 

close to 100 000 retrospective forecasts can be generated and analyzed with minimal 

human involvement. In comparison, the operational environment is rich with subjectivity 

incorporating a broad range of “gray” information into the forecasts.  

In order to overcome the operational requirement of the union of datasets and to 

counter the operational search algorithm’s tendency to exclude sites with data during 

extreme years, this study develops a modified site weighting scheme as well as a 

primitive principal components analysis to develop forecast equations.  

Aside from the data from the year being hindcast, if at least 20 years of coincident 

streamflow and 1 April snow measurements are available, the period of record correlation 

coefficient between each snow site and streamflow is calculated. If the correlation is 

greater than 0.1, the site is considered eligible for analysis. Although a snow site may be 

located near a basin, it may not capture the streamflow-relevant snow conditions within 

the basin, or it may suffer from data quality issues. During forecast equation 

development, a hydrologist would exclude such sites. Additionally a hydrologist would 

eliminate sites with negative correlation with streamflow; it is difficult to imagine a 

scenario where wetter basin conditions would reliably indicate less streamflow.  



 

154

The Z-scores of the remaining sites are computed relative to their individual 

period of record: 

 

Zsijk = (Sijk – mean(Sik))/std(Sik) 

 

where S represents the snow measurement (SWE in inches) and subscripts “i”, “j”, and 

“k” are the measurement month, year and location, respectively. The Z-score 

transformation is done to standardize the values so the relative variations in station 

conditions are considered equally in regression, rather than the analysis being dominated 

by the stations with the greatest absolute variability. This normalization is also the first 

step of a principal components analysis.  

Next, the Z-scores are then combined to form a single basin-wide composite snow 

index time series. Later, this time series will be regressed against streamflow to form the 

streamflow forecast equation. Simply averaging the Z-scores gives them equal weighting. 

In contrast, multiple regression techniques would emphasize the individual snow sites 

that are well correlated with streamflow and give less weight to unimportant sites. The 

hybrid technique adopted here develops a weighted average of the snow sites, based on 

their correlation with streamflow 

 

SWEij = Σ(Rk
2*Zsijk)/( Σ(Rk

2)) 
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where “k” depends on the number of sites reporting. Rk is the correlation coefficient 

between 1 April snowpack and the streamflow for the target period corresponding to 

forecasts issued in January (i.e., April-September volume). This selection of months is 

likely to work well in most locations except Arizona basins where snowpack peaks and 

melts early and 1 April snow can but might not reflect the overall character of the runoff 

season (i.e. 1 April snow is being compared to January-May runoff).  

The Rk weighting is used for all snow indexes developed, regardless of the 

leadtime of the hindcast being developed (e.g., the correlation between 1 April snowpack 

and seasonal streamflow is used as the weighting factor while developing a hindcast 

equation between 1 January snowpack and seasonal streamflow). The date of 1 April is 

selected because it is generally the apex of the snow accumulation season when snow has 

its highest correlation with streamflow. Of any month of the year, 1 April also almost 

always has the longest period of record of snow measurements (see chapter 2.2). 

Choosing one set of Rk weightings to use in all months allows the longest period of 

record to be used in the estimation of weights. Also, while the absolute correlation of 

snow and streamflow may change with leadtime, there is little hydrologic reason to 

believe that a site’s relative importance compared to its peers would change throughout 

the season, except for ephemeral sites whose snow typically peaks well before 1 April 

and has all but disappeared later in the season.  

At this stage, this combination technique is similar but not identical to principal 

components analysis. One key difference is that in principal components analysis, the 

weighting factor is not based on the correlation with an external variable (in this case, 
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streamflow) but rather is based on intra-variable correlation so as to capture the primary 

modes of variability within the dataset. This study assumes that the primary mode of 

variability is related to streamflow volume and that both techniques would yield similar 

results. The other key difference between the techniques is that principal components 

analysis requires serially complete data whereas the selected technique uses however 

many or few sites are available and can compensate for missing data.   

The disadvantage of the selected technique is that early in the period of record, 

when only one or two sites are available per basin (especially if those sites are 

ephemeral), the Z-score time series tends to exhibit more variability whereas later in the 

period of record when more sites are available, the composite Z-score can exhibit less 

variability. The selected technique also artificially benefits from always knowing the 

long-term mean and standard deviation of the measurement; the first few years after a site 

is installed, stable estimates of such moments are unavailable. If the sites have different 

periods of record, their Z-scores are not strictly comparable if there are strong trends in 

the mean or variability over time, something that might degrade the simulated forecast 

skill. In comparison, principal components analysis requires that all sites have identical 

periods of record so mixing stations with different baseline periods is not an issue.  

As mentioned earlier, if only one site is available in a given year, the index is 

equal to the Z-score for that site. If more than one site is reporting, the index is the 

weighted average of the Z-scores of the sites (weighted by the correlation between data 

values at that site and seasonal streamflow). If an individual snow site is well correlated 

with streamflow, it is given relatively more importance than a site not well correlated 



 

157

with streamflow. Again, this technique suffers early in the period of record when only 1-2 

snow sites are available; if only one low correlation site is available in a given year, this 

site is given full weighting for that year in the composite snow index. The overall 

technique is described visually in figure 7.3. This technique differs from the operational 

search technique in that in the selected technique, all sites are considered although some 

with a greater weight than others. In the operational technique, sites can be entirely 

excluded from the analysis if they are not in the optimal mix of sites. Again, the current 

technique may be causing too much spatial smoothing of the data, but given the size of 

the basins, this effect should be minor compared to the benefit of having a longer period 

of record in the calibration.  

A linear regression equation then relates the composite snow index to streamflow 

and is used to “forecast” the censored year’s flow. If the “forecast” is less than zero and 

the streamflow has not been log transformed (see Table 2.4), zero is used in its place. 

Operationally, regression equations can produce negative forecasts. In these cases, the 

hydrologist does additional analysis to arrive at a physically realistic forecast, such as the 

previous minimum flow observed on record. The replacement with zero is used here, 

instead, out of the desire for a parsimonious set of rules for developing forecasts. 

Negative forecasts most often occur when a linear fit is applied to data whose 

fundamental relationship is non-linear. It is reasonable to assume that log-transformation 

of the skewed flows mentioned earlier eliminated most of the possibilities of negative 

forecasts.  Finally, if no snow sites are available, the hindcast is considered missing.  

 



 

158

7.4 Precipitation hindcast system 

 

Accumulated precipitation data at relatively low elevations can serve as an 

indicator of how much moisture has been accumulated in the snowpack at higher 

elevations, the origin of most basins’ summer streamflow. Additionally, spring rainfall 

can contribute directly to runoff and fall rainfall can contribute to soil moisture. 

However, at some times of year, higher evaporation rates can reduce the net availability 

of precipitation for streamflow. Likewise, some fall rainfall leaves the basin as runoff 

before the land surface is sealed over with snow. Therefore, if precipitation data are to be 

used to forecast streamflow, the adopted technique must balance the relative importance 

of precipitation during some months over others.    

In the 1950s-1970s, the NWS advocated such a forecasting technique using 

accumulated precipitation, as described in CBIAC (1961, 1964). This system is especially 

attractive for use in this study because it matches the operational practices of NWS water 

supply forecasters during that period. Originally, the NWS method used precipitation 

from August through June to derive an index used in forecasting water year runoff. 

Forecasts issued in January would use observed accumulated precipitation data from 

August-December and an estimate of future precipitation after December. Each month’s 

precipitation was given a semi-subjective weight to recognize evaporative losses in the 

early fall and late spring. This study uses a modified version of the weights used in 

CBIAC (1961), shown in Table 7.1. The original CBIAC weights were developed for a 

northern basin in Montana and the weights selected below better reflect broader 



 

159

conditions throughout the Western US; in practice, the weightings assigned to each 

month would depend on the basin being studied.  

 

Table 7.1. Monthly precipitation weighting coefficients. August-1 indicates August 
from the previous water year.  
 
August-1 0.03 December 0.11 April  0.11 August  0.03 
September-1 0.06 January 0.11 May  0.09 September 0.01 
October 0.09 February 0.11 June  0.07 
November 0.11 March  0.11 July  0.05 

Therefore, a forecast issued in January would use a precipitation index of the form  

 

0.03 x (August-1) 

0.06 x (September-1) 

0.09 x (October) 

0.11 x (November) 

                 +  0.11 x (December) 

Net August – December Precipitation Supply Accumulation 

 

This index is a proxy for the net precipitation supply, the amount of water 

available for streamflow, accounting for the lesser importance of rain in the fall and the 

increase of evaporation in the spring. Additionally, precipitation-elevation gradients 

during winter frontal storms are much steeper than during spatially heterogeneous 

summer convective events. Therefore, low elevation NWS stations during winter would 
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have much less precipitation than the high-altitude snow-producing parts of the basin, 

whereas during summer sometimes an equal amount can fall in both places. In winter, the 

NWS stations would be less than the basin wide average precipitation and therefore 

would need higher weights.  

The precipitation amount is accumulated to date for each site, and then converted 

into a Z-score as with the snow hindcast system. A basin-wide precipitation index is 

developed in the same way, using an average of sites, weighted by their correlation of net 

August-March precipitation supply with seasonal streamflow. As with the snow-based 

system, a single set of weights is used for all months because it is assumed the relative 

importance of sites does not change from month to month. Again, if a forecast is 

negative, it is reset to zero and if no data are available to make a forecast, it is considered 

missing.  

 

7.5 Climate-based hindcast system 

 

 Similar to the snow and precipitation systems, the 8 climate indices were 

correlated with streamflow and combined into a “composite” climate index for the basin. 

In the previous experiment, snow and precipitation could only be positively correlated 

with streamflow in order to be considered. The climate indices with negative correlations 

with streamflow were considered, although their sign was reversed before entering into 

the composite index. For example, if streamflow is positively correlated with Niño3.4 (r 

= 0.5) and negatively correlated with SOI (r = -0.5), the composite index would be 
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(0.52*Niño3.4 – (-0.5)2*SOI) / (0.52 + (-0.5)2). The end result is that all of the climate 

indices are given a positive orientation before aggregation into a “basin wide” climate 

index. The climate Rk weightings are proportional to the correlation between seasonal 

streamflow and the September-November values of the climate indices. Again, the 

weightings are fixed and are used for every month. At the time of forecast, the previous 

3-month average of the climate index is used. For example, a forecast issued in January 

might use Niño3.4 averaged from October-December whereas a forecast issued in April 

would use the average Niño3.4 value from January-March.   

 

7.6 Hybrid hindcast systems 

 

Since the 1980s, the NRCS and NWS are required to coordinate streamflow 

forecasts. Both agencies have relatively separate approaches and each has its strengths 

and weaknesses. Since neither agency’s approach can be said to be conceptually or 

quantitatively better in all respects (see chapter 6.3.1), there can be benefit in combining 

them. However, the coordination system, in practice, is simplistic, ad hoc and subjective, 

rather than based on quantitative analysis and objective techniques (despite the rich 

research literature on methods of combining forecasts [Clemen 1989 provides a 

comprehensive review]). Despite the flaws of the methodology, a “unified voice” in the 

forecasts eliminates confusion among users about which guidance they should follow (as 

described in chapter 6.3.1). The current operational merging of NRCS and NWS 

forecasts is non-quantitative and does not follow a fixed methodology. Sometimes the 
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forecasts are simply averaged. Other times, a forecaster may exert more influence over 

the other through a convincing argument or force of personality. The research literature 

suggests that the forecast should be an average of individual forecasts, weighted by the 

historical skill of each individual forecast system. When such historical skill measures are 

not available, the research literature cautions that individual forecaster self-confidence is 

not necessarily a good basis for weighting forecasts when combining them (especially if 

an individual is prone to overconfidence).   

In the experiment in this study, the combined forecast is the weighted average of 

the forecasts from the individual snow, precipitation and/or climate-based systems. The 

weights are determined by a measure of historical skill, the strength of the calibration R2 

of the individual forecast equations. For example, if the calibration R2 of the snow, 

precipitation and climate hindcasts are 0.8, 0.6 and 0.2, respectively, the combined 

hindcast is  

 

Fspc = (0.8 * Fs + 0.6 * Fp + 0.2 Fc) / (0.8+0.6+0.2) 

 

Where Fs is the forecast produced by the snow system, Fp is for the accumulated 

precipitation-based forecast, Fc is based on climate, and Fspc is the combined forecast. 

As with the other systems, the hybrid hindcasts are developed in jackknife mode. When 

hindcasts are combined and one of the hindcasts is not available in an individual year, its 

weighting is set to zero. For example, if snow and precipitation hindcasts are being 
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combined in 1953, and no snow hindcast is available for that year, the combined hindcast 

is identical to the precipitation hindcast. 

In later sections, hindcasts developed by joining the hindcasts of two or more of 

the snow, precipitation and climate systems are referred to interchangeably as “hybrid” or 

“combined” hincasts. Also, the terminology “snow+precipitation” hybrid hindcast (e.g., 

in the next section) refers to the joining of a snow hindcast (chapter 7.3) and accumulated 

precipitation hindcast (chapter 7.4).  

 

7.7 Performance of hindcast systems 

 

 Figure 7.4 shows the skill of the snow (top left) and precipitation hindcast system 

(top right) versus lead time. The lower left panel shows the performance of the combined 

snow+precipitation system and the lower right shows the performance of the official 

forecasts. As no snow measurements are available in November and December, the 

forecasts from the combined snow+precipitation system during those months are identical 

to those based on accumulated precipitation (see chapter 7.6). These jackknife hindcasts 

are evaluated over the period of record using the NS, as described in chapter 6.3.1. Each 

box summarizes the performance of the 29 study basins, as was done in figure 6.3. As is 

expected, the skill of the forecasts improves as the lead time decreases. The skill in 

January to April of the combined snow-precipitation system is competitive with the 

official forecasts. While the synthetic hindcasts show that skillful non-climate based 
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forecasts are possible in December, the skill in November is almost indistinguishable 

from zero. 

The skill of the forecasts for the individual snow and precipitation systems is 

comparable although the spatial patterns of skill slightly differ (figures 7.5-7.6). These 

figures follow the same convention as figure 6.2. Snow is generally a better predictor of 

streamflow for most locations, especially in the interior Western US and Cascades. 

Accumulated precipitation seems to fare better in eastern Arizona and southern locations 

(consistent with Lettenmaier and Garen 1979).  

The overall resemblance of skill for the official forecasts and those from the 

synthetic snow-precipitation system is very good. In one sense this is somewhat 

surprising given that this system does not use any information about soil moisture/long 

term drought, the approach is objective and uniform for a broad range of very different 

climates and landscapes, does not incorporate any “gray” information and is not adjusted 

using human expertise. In another sense however, this system uses all of the snow and 

precipitation data that the official forecasters would have used, and uses a regression 

technique that generally resembles the operational technique.  

As with the official forecasts, Columbia basin and Montana synthetic forecasts, as 

well as Arizona hindcasts are relatively skillful in January, with little skill in most other 

regions. In April, both the official and synthetic forecasts perform very well in California, 

Arizona, good in the Columbia and Colorado basins, and poor on the Tongue WY, 

Lamoille NV, Sandy OR, and Umatilla OR.  
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Figures 7.7-7.8 show the correspondence (as measured by the NS) between the 

synthetic hindcasts and the official forecasts for January and April, respectively. Large 

filled circles indicate high correspondence (i.e., the synthetic hindcast values match those 

of the official hindcasts in any given year), small circles indicate little relation and hollow 

circles indicate a worse relation than using the long term average forecast. The outer 

reference circle indicates a perfect match between synthetic and official forecasts. In 

January, there is excellent agreement in Idaho, Montana, Utah and California and poor 

agreement in the Southwest, Olympic Peninsula and Tongue WY. The poor 

correspondence may be due to the January official forecasts being more affected by 

climate and/or long term soil moisture deficit information. Also, relatively few official 

forecasts issued on 1 January are available and the results may be an artifact of the small 

sample size.  

The agreement in April is much greater over almost all of the Western US. The 

official forecasts also bear a better resemblance to the snow-based hindcasts than the 

precipitation based hindcasts. This result is consistent with the fact that the official 

forecasts used in this analysis are the primarily snow-based NRCS forecasts as opposed 

to the precipitation-based NWS forecasts. The low 1 April forecast correspondence in 

Lamoille NV is mostly due to one extreme year (1943), the same year with a large 

forecast error described in Church and Boardman (1944). As mentioned earlier, the 

forecasts were (deleteriously) based on the expected effects of a high water table. If the 

forecasters had based their forecasts solely on observed snow and precipitation, they 

might have fared much better according to this analysis.   
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Figure 7.9 shows scatter diagrams of the 1 April official and synthetic (snow 

+precipitation combination) forecasts for four locations around the Western US. The 

diagonal line for perfect correspondence is included. In general, there is exceptional 

correspondence between the official forecasts and the synthetically generated ones. The 

most disagreement occurs at the tails of the distribution, where the official forecasts 

display more variability (“bullishness”) than the synthetic hindcasts. Without a detailed 

evaluation of the quality of the forecasts at the tails, it is impossible to say if the official 

forecasters conduct special analysis during unusual conditions, or simply overreact in the 

face of extreme objective guidance.  

 

7.8 Sensitivity tests to measure relative merit of climate information 

 

 By itself, climate information is a relatively weak predictor of streamflow. For 

example, figure 7.10 shows a plot of the skill of forecasts issued at various lead times for 

snow, precipitation, climate and combined for a location in the southwest (top) and 

northwest (bottom). Late in the season, combined forecast skill is almost entirely 

dominated by snow and precipitation information, which each have about the same skill. 

As lead time increases, snow and precipitation hindcast skill rapidly erodes to where 

there is little to no skill before January. Climate-based forecast skill, in comparison, is 

low but constant versus leadtime. Early in the season, it is the only predictor available 

with which one can make a skillful forecast.  
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 Figure 7.11 shows a map of the skill of the climate based forecasts, following the 

same convention of figure 6.2. The skill, outside of calibration, is very low and in some 

locations (i.e., California, Nevada) is negative. The skill is best in regions heavily 

influenced by El Niño and the Pacific Decadal Oscillation (the Pacific Northwest and the 

Southwest). In southeast Oregon and Idaho, the skill is not as strong as one might 

otherwise expect due to the large forecast error associated with the 2000-2001 La Niña 

drought in the Pacific Northwest (see also chapter 5.4).  

 Figure 7.12 is a box diagram of the relative importance of various climate indices 

in forecasting streamflow. Each box summarizes the absolute value of the calibration 

correlation coefficient between the individual climate index and streamflow for the 29 

study basins. High values indicate strong correlation during the calibration of a 1 January 

forecast equation. The NAO index is a very poor predictor of western water supplies. The 

WP index is also a relatively poor predictor, whereas PNA, SOI, Niño3.4 and PDO have 

about the same relative importance, in part because of the intercorrelation of the various 

indices.  

 Overall, both El Niño and PDO yield low to moderate skill streamflow forecasts. 

In April, climate contributes an almost imperceptible amount of skill to a system that also 

considers snowpack and accumulated precipitation. In November and December, 

however, most of the available skill is due to climate information. Considering the 

invariance of climate forecast skill with lead time, it is possible that a forecast in 

September may also have about the same skill as a forecast issued in December.   
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7.9 Summary 

 

 This chapter developed and tested a system to use observed snow, accumulated 

precipitation and climate indices to objectively hindcast seasonal streamflows. A 

combined system of using snow and precipitation data produces hindcasts that bear a 

remarkable resemblance to the official historical NRCS water supply forecasts. These 

hindcasts also have the same accuracy properties of the official forecasts, in both space 

and with leadtime. As with the official forecasts, 1 April hindcasts perform very well in 

most regions except Oregon and the Great Plains (northeast Wyoming). Hindcasts issued 

1 January perform well in the Columbia basin, Montana and Arizona. These hindcasts 

suggest that purely accumulated precipitation-based water supply outlooks have very 

modest skill on 1 December but almost no skill on or before 1 November. If climate 

information is included, there is very little change in the overall skill of the 1 April 

hindcasts. Hindcasts issued 1 January benefit somewhat from climate information, and 

almost all of the available, albeit modest, skill before December is due to climate 

information. This information is most effective in the regions impacted by El Nino (i.e., 

the Pacific Northwest and Southwest US but almost no locations in the Great Basin or 

Upper Colorado basins).  
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igure 7.1 Schematic of the forecast creation and combination system described in 
hapter 7.  
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Figure 7.2. Map of study basin streamgage locations (solid dots), basin boundaries (cross 
hatching) and 35 km buffers (solid gray). Numbers refer to entries in table 2.4.  
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Figure 7.3. Visual depiction of the development of a basin-wide snow index for 
the Pecos River near Pecos. Top: light lines indicate 1 April snow measurement 
Z-scores for nine individual sites. Heavy line with triangles represents the basin-
wide composite. Bottom: cumulative site weightings used in developing the basin-
wide snow index. Each color represents the relative contribution of each site 
versus time. Note that a few sites at the beginning of the record receive most of 
the weighting while in the 1990’s, the weighting is split among a diversity of sites.  
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Figure 7.4. Evolution of skill (NS score) versus forecast issue month for 
the 29 study basins for the entire period of record. Top left, right) 
synthetic snow and precipitation hindcasts, respectively. Lower left) 
synthetic snow/precipitation consensus forecast Lower right) Skill of the 
official NRCS historical forecasts. Boxes represent quartiles and median, 
with outliers represented as dots. 
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Figure 7.5 Maps of 1 January forecast skill (NS score) for 29 study basins for 
the entire period of record. Top left, right) synthetic snow and precipitation 
hindcasts, respectively. Lower left) synthetic snow/precipitation consensus 
forecast Lower right) Skill of the official NRCS historical forecasts. Inner 
symbol diameter is linearly proportional to forecast skill, with the outer circle 
representing “perfect” forecasts and the smallest circle indicating no skill. 
Hollow circles (i.e. Sandy near Marmot Official) indicate negative skill.  



 

174

Figure 7.6. Same as figure 7.5 except for 1 April forecasts.  
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igure 7.7. Correspondence (NS) between synthetic hindcasts and official 
orecasts for 1 January. Map convention is the same as figure 7.5 Hollow 
ircles mean negative NS (e.g. Pecos, NM). Poor correspondence in the 
outhwest and Pacific Northwest are in part due to the short time series of 1 
anuary forecasts. Also, official forecasts consider soil moisture deficits and 
limate predictions whereas the synthetic hindcasts do not.  
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Figure 7.8. Same as figure 7.7 except for 1 April forecasts.  
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Figure 7.9. Representative sampling of 1 April official water supply outlooks (X-
axis) versus the synthetic snow+precipitation hindcasts (y-axis) for four locations 
around the Western US. All measurements are in 1000’s of acre-feet. Perfect 
correspondence is shown by the diagonal line.  
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Figure 7.10. Time series of forecast skill components versus issue month for the 
Virgin AZ (top) and Salmon ID (bottom) rivers. Skill components are shown 
using different lines. The solid line represents the skill of the combined 
snow+precipitation+climate synthetic hindcasts. Skill is measured over the entire 
period of record.   
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Figure 7.11. A map of the period of record skill (NS) of 1 January climate-based 
synthetic streamflow hindcasts. Figure convention is the same as figure 7.4. Hollow inner 
circles (e.g. Nevada) indicate negative skill. Large outer circles are provided for reference 
for perfect forecasts.   
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Figure 7.12. Relative importance (absolute correlation coefficient during 
calibration of 1 January forecasts) of various climate indices in predicting 
streamflow. Box plot notation same as figure 7.4. The NAO is a relatively poor 
predictor of western water supplies.  
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8. DECADAL VARIABILITY AND WATER SUPPLY FORECASTS 

 

8.1 Introduction 

 

 Hydrologists have long recognized the relationship between forecast error and 

unknown future precipitation. Reducing uncertainty about future precipitation has always 

been looked on as a promising avenue to improving water supply forecasts. This and 

other studies have shown that, during the heart of the water supply forecast season, the 

existing state of the art in climate prediction can still only explain a small part of 

interannual precipitation variability. This modest predictive capability is all that is 

available, however, when it comes to issuing water supply forecasts before any snowpack 

has accumulated. Previous sections and chapter 9 discuss how operational water supply 

forecasters can best take advantage of existing climate forecast skill (i.e. in what parts of 

the country skill can be expected, at what times of year, and so on).  

 While the science of climatology may only be able to explain or predict a 

relatively small part of the overall seasonal-to-interannual variability in climate, the 

currently unexplainable aspects of climate variability still have an enormous impact on 

water supply forecast activities. Among other things, hydrologists are keenly interested in 

the causes for and implications of long-term climate variability and trends. Will the next 

20-30 years be of a significantly different character than the recent 20 years? Will current 

water supply forecasting techniques fare well in this changed climate, or are different 

forecasting tools necessary? Statistical water supply forecasting techniques assume that 
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climate is stationary and random; is this a valid assumption? If it is not, what is a better 

assumption? 

 This chapter begins with a discussion of the role of the Pacific Decadal 

Oscillation (PDO) in water supply forecasting. This feature is responsible for low 

frequency variability in Western US precipitation and thus seasonal streamflow. This 

chapter will test and evaluate a method for water supply forecasting using PDO 

information as suggested by several researchers.  

 This chapter will also investigate any observed long-term variability in water 

supply forecast skill. It will show that there is a recent downward trend in forecast skill 

caused by a resurgence of extreme springtime precipitation events. If the cause and 

expected future behavior of these extreme springtime events are discovered, hydrologists 

may have a great opportunity to control, or at least anticipate, decadal variability in water 

supply forecast skill.  

 

8.2 Is subsetting by PDO state a good forecast strategy? 

 

 Koch and Fisher (2000) and others have found that the PDO index, by itself, is 

not a very good predictor of streamflow in any single year because is a decadal index but 

it also exhibits high frequency variability typical of mid-latitude phenomena. This high 

frequency variability is of questionable usefulness in predicting streamflow. Rather, the 

relevance of the PDO could be in its modulating influence on ENSO activity. Koch and 

Fisher show that the correlation between Cascadia streamflow and El Niño is about 0.3-



 

183

0.5 for all years. The correlation increases to 0.6 during low PDO years and decreases to 

0.2 during high PDO years. Gutzler et al. (2002) showed a similar pattern in 

Southwestern US precipitation. Before the 1977 PDO shift, La Niña is strongly related to 

dry conditions in the Southwestern US yet El Niño is not necessarily related to wet 

conditions. After the 1977 shift, El Niño is a strong indicator of wet conditions and La 

Niña predictability breaks down.  

  Some have advocated the development of separate streamflow forecast equations 

for high and low PDO years (Alan Hamlet, University of Washington, personal 

communication, 13 January 2003). For example, one equation relating snow and 

streamflow would be calibrated using only high PDO years and another equation would 

be developed using only low PDO years. In realtime forecasting, the hydrologist would 

select the equation whose calibration PDO state matches the current PDO state. There are 

some potential challenges associated with such a system. First, not all basins are endowed 

with a long time series of continuous data. For example, some operational forecast 

equations are developed on fewer than 15 years of data. Subsetting that data would yield 

even fewer years for calibration. The gain in PDO-related skill might not offset the loss in 

skill due to the shorter calibration period. To counter this challenge, one might develop 

regional relationships between PDO and streamflow for a select group of streamgages 

with very long periods of record. Forecasts for the subset of streamgages could be 

extrapolated to locations with shorter periods of record using standard operational routing 

procedures (such as those used to translate forecasts at headwater locations into forecasts 
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for mainstem points on major rivers). Such an approach would be worthy of future 

research efforts.  

 After deciding on the basis for splitting up the forecast equations (e.g. high PDO 

vs low PDO), one must determine how to categorize the historical years, as well as the 

current year. “Before 1977” and “After 1977” is a popular date for such subsetting. 

Hamlet and Lettemaier (1999, 2000) indicates the PDO regime shift dates are 1925, 1947 

and 1977. Currently, what is the most recent PDO state? Hamlet has implied that a PDO 

shift could have occurred in 1996 or 1998. McFarlane et al. (2000) believe it was 1997 as 

does FOCI (2002). Schwing and Peterson (2003) suspect the regime change happened in 

1998 when the PDO index changed from highly positive to highly negative. Others 

believe it might take many years to retrospectively determine the year of the regime 

change, if one has happened at all (Michael Dettinger, US Geologic Survey, personal 

communication, 21 July 2004). It does not help that the PDO index changed from highly 

negative in 2002 to near record positive in 2003. It is unclear which is the transient 

feature, the negative values in 1998-2002 or the positive values in 2003?  

  On a related issue, one hydrologist has gone as far as to say that the water supply 

forecasters should develop separate forecasting equations, one that includes climate 

information and one that does not (Phil Pasteris, NRCS Water and Climate Center, 

personal communication, 4 August 2004). Given that sometimes climate “works” and 

sometimes it doesn’t, the forecaster should use the non-climate equation in those years 

that the climate-streamflow relationship breaks down. The 2001 La Niña and the Pacific 

Northwest drought (see chapter 5.4) is given as an example of a year in which climate did 
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not “work”. The flaw in this strategy is that one does not know in advance whether 

climate is going to “work” this year or not; one only knows after the fact. Additionally, a 

season that begins with precipitation contrary to the expected climate signal will not 

necessarily continue that way throughout the remainder of the season. In other words, if 

the climate-based guidance suggests a wet fall, winter and spring and the October-

January precipitation has been unusually low, the forecaster may be tempted to assume 

that climate is not “working” this year and abandon the climate-based guidance. The 

logic in doing so would be just as flawed as the opposite extreme of assuming that 

because a dry fall occurred, the climate was “storing up” its wet signal and would 

definitely “unleash” it in the spring (more so than the objective climate forecast might 

indicate). A forecaster may end up randomly selecting equations, throwing away some 

opportunities and falling into traps in other years.  

 This study uses four configurations to test the relative merit of the proposed PDO-

based subsetting scheme. First, a control case uses snow, precipitation and climate data, 

excluding the PDO index in the hybrid system described in chapter 7.6. The second case 

is the same as the first, except that the PDO index is included in the list of candidate 

variables. The first and second cases use all years from the period of record in their 

calibration (except the jack-knifed year being hindcast). The difference in skill between 

these two cases is the relative merit of using PDO information as an index over not using 

PDO information at all.  

The third and fourth cases are the same as the first case (excluding the PDO index 

among candidate variables) except that the calibration years are subsetted by PDO state. 
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The sign (positive or negative) of the PDO index average for the 3 months prior to the 

issue month is used to determine the PDO state of that year. In the third case, the 

equation corresponding to the PDO state of the current year is selected. This scenario is 

the equivalent to the approach used by Koch and Fisher (2000). In other words, if this 

year’s PDO value is positive, the hydrologist uses the forecast equation whose calibration 

years are also PDO positive. The fourth case selects the equation calibrated on the PDO 

state opposite that of the current year. This final experiment is akin to the hydrologist 

who tries to guess what the current PDO state is, but always selects incorrectly and uses 

the “wrong” PDO equation. The difference in skill between these two cases provides an 

estimate of the importance of accurately knowing PDO state when selecting the forecast 

equation. Both experiment 3 and 4 relax the minimum number of historical years needed 

to calibrate a regression equation from 20 now to 15 (see chapter 7.3). As mentioned 

previously, subsetting by PDO state can halve the available data for calibration of a 

forecasting equation. A limited set of study sites (particularly the Dungeness near 

Sequim, WA) have less than 40 but more than 30 years of snow measurements. Without 

the relaxation of the period of record limit, no analysis would have been possible for 

these sites.  

Experiment 4 also accounts for the changes in forecast skill solely due to the 

subsetting reducing of the length of the calibration data set; experiment two may have an 

advantage over experiments 3 and 4 because it is able to select from a larger pool of 

calibration years. If subsetting by PDO is a good strategy, experiment 3 must yield more 

skillful forecasts than experiment 4. If it is the ideal strategy, then experiment 3 must 
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outperform experiment 2. As with elsewhere in this dissertation, the forecasts are 

developed using a jackknife technique and are evaluated by the NS score. 

 Figure 8.1 contains four scatter diagrams of the skill of the various experiments 

previously described for hindcasts developed on 1 November. Each diagram contains the 

period of record NS score of 1 November hindcasts where each point is one of the 29 

study basins. In all figures a 1-to-1 line is provided for reference. The top left figure 

compares experiments 1 (no PDO) and 2 (PDO as an index). For the 9 data points above 

the 1-to-1 line, the inclusion of PDO information adds a small amount of skill to forecasts 

made in November. All but one of the nine basins that improve with the inclusion of 

PDO as an index lay north of 42 degrees latitude (the California/Oregon and Utah/Idaho 

border).  

 Next, the top right figure compares experiments 1 (no PDO) and 3 (matched PDO 

 subsetting). Although the PDO subsetting scheme does improve the forecasts for a select 

number of locations above the line (in Washington, Northern Montana and the Virgin 

AZ), it degrades the forecast skill for a majority of points including the Southwest US.  

 Third, the bottom left figure compares experiments 2 (PDO as an index) and 3 

(matched PDO subsetting). Only two basins above the line improve by PDO subsetting 

(Malheur OR and Virgin AZ), and for the other 27 sites, using the PDO index as an input 

variable in the regression equations is a better strategy.  

 Finally, the bottom right diagram shows the performance of experiment 3 

(matched PDO subsetting) versus experiment 4 (mis-matched PDO subsetting). 

Interestingly, consistently choosing the wrong PDO state improves the forecasts in half 
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the basins (in particular AZ, CA/NV, UT, CO, southern Idaho and eastern Oregon) and 

degrades the skill in the other half of basins. For some locations, however, choosing the 

wrong PDO state yields significantly worse forecasts than choosing the correct PDO state 

(especially points in Washington and Northern Montana).  

 Figure 8.2 is the same as figure 8.1 except for hindcasts issued in January. The 

overall picture is the same. PDO as an index improves the forecasts over not having any 

PDO information at all. Subsetting by PDO state is a worse strategy than using PDO as 

an index. Always choosing the wrong PDO state is somewhat but not always just as good 

a strategy as choosing the correct PDO state.  

  

8.3 Decadal variability in water supply forecast skill 

 

 Although PDO subsetting does not yield significant improvements in jack-knife 

forecast skill, operational agencies are still interested in whether or not water supply 

forecast skill exhibits decadal and long term variability. Water supply forecast errors 

might not be completely random; errors may cluster together during particular epochs, 

contrary to the assumptions of climate stationarity. The technological determinist would 

expect that forecast skill is monotonically increasing as technology and scientific 

understanding improve. Investments in science yield reductions in forecast uncertainty 

and narrowing of uncertainty bounds. An extreme pessimist might note the dramatic 

organizational changes within the NRCS (i.e. the downsizing of forecast personnel, the 

gathering of hydrologists in a national center removed from the basins being forecasted) 
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and expect an erosion of forecast skill.  This section measures if there have been changes 

in forecast skill and subsequent sections search for causes responsible for these changes.   

 There is no shortage of human factors that may potentially influence trends in 

forecast skill. The early 1980s saw a major restructuring of forecast facilities within the 

NRCS, from being state-based to being centrally located (Barton 1983). The NRCS 

forecasting staff in 2003 was only one third of its size in 1980. Garen (1992) developed a 

significantly different statistical forecasting technique that found wide use after the 

1990s. Some NWS offices adopted seasonal simulation modeling of streamflow and the 

ESP system in the late 1970s.  

The automation of snow courses was phased in over the 1980s with the advent of 

the SNOw TELemetry (SNOTEL) network, which was an improvement but also a 

discontinuity in data collection technology. Changes in land use, small water 

impoundments, and undocumented diversions could have affected the future 

representativeness of historical flow. It is unknown whether the current snow-based 

forecasting equations are representative under a climate that is warming and oscillating 

on decadal timescales. The forecasts were objectively based initially, but the published 

values were sometimes adjusted using non-quantifiable and non-reproducible human 

professional judgment. Both the statistical procedures and the human operators changed 

over the history of forecasting, as will they change in the future (although it would be 

misguided to ascribe a significant rise or fall in skill to an individual person, given the 

many parties involved with creating a forecast). Some, all, or none of these factors may 

have shaped how forecast skill evolved recently.  



 

190

Figure 8.3 (top) documents the observed trend in westwide average forecast skill 

for 20-year moving window periods. Data must be serially complete in 20-year window 

to be computed for a basin. At least 8 basins must have a valid NS for a value to be 

shown. Plotted is the westwide average of all of the available NS scores. Given the short 

period of record of January forecasts, it is difficult to measure any kind of trend in such 

long-lead time forecasts. February forecast skill appears to be steadily increasing. Most 

interestingly, 1 April forecasts were least skillful in the 1940s-1960s, reached a relative 

maximum in skill from the 1960s-1980s and rapidly declined afterwards. There is some 

evidence of an upswing in 1 April forecast skill in the past few years although it is too 

soon to say if that improvement will persist.  

Figure 8.3 (bottom) shows the same trends in forecast skill, except for the 

objective synthetic snow+precipitation hybrid hindcast system developed earlier in this 

study (chapter 7.6). It is highly intriguing that this system almost exactly reproduces the 

decadal trends in forecast skill. Figure 8.4 shows this coincident variability more clearly. 

Here, the westwide skill time series is presented as an anomaly relative to the forecast 

skill for each leadtime from 1960-2000. Again, official forecasts (dashed) were poor in 

the beginning of the period of record, peaked in skill in the mid-1960s-1980s and sharply 

declined afterwards. The synthetic hindcast performance is shown as the solid line, 

almost exactly matching the decadal variability in official forecast skill.  

The interpretation and implications of figures 8.3-8.4 are that, for better or for 

worse, many of the human factors described above are practically irrelevant to long term 

trends in water supply forecast skill. Considering that the synthetic hindcast system is 
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entirely objective, the downward trend in skill is in no part due to irresponsibility or 

fallibility among the current generation of human forecasters. Simply, the forecasters 

followed their guidance and it led them astray in recent years. Figure 8.4 also implies that 

the peak in skill the 1960s-1980s is unusual relative to the entire period of record, is not 

evidence of a higher “caliber” of human forecasters during those years. Figures 8.3-8.4 

suggest that the recent “slump” may be more of a return to normal, and that far worse 

forecasting periods existed (i.e., the 1940s-1960s).   

Figure 8.5 contains maps of the relative skill of the 1 April official forecasts over 

four 20-year periods. Shown is the anomaly in forecast skill, relative to the period of 

record skill for that location. Large filled circles indicate a 20-year period where the skill 

of the forecasts was considerably less than other periods (“a slump”). Hollow circles 

indicate skill better than other periods (“a streak”). Small circles show skill near to the 

long term average skill. Data must be serially complete within the 20-year window for a 

symbol to be shown.  

This figure shows that in 1951-1970 (upper left), the interior west had relatively 

low forecast skill for almost every forecast point. 1961-1980 (upper right) was an 

especially poor period for Lamoille, NV and the Great Basin, although forecasts 

performed well in the Upper and Lower Colorado basins and parts of the Pacific 

Northwest. The “Golden Age” of forecasting in 1971-1990 (lower left) had no location in 

the west with very poor skill, and had many locations with skill much above the long 

term mean (e.g., Montana and the Pacific Northwest). Afterwards, skill collapsed in 
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Pecos, NM, the Colorado Basin and in Oregon in 1981-2000, as shown by the large filled 

circles in the lower right panel.  

Figure 8.6 is the same as the previous figure except for the synthetic 

snow/precipitation hindcasts. The synthetic hindcasts had poor skill in the early period of 

record in the great basin and the Columbia (upper left and upper right). In 1971-1990 

(lower left), every location in the west experienced a “streak” in forecast skill, only to 

have skill fail in the southwest and Oregon in the years that followed (lower right). Once 

again, because this feature is reproduced in the objective hindcast system, it is entirely 

misguided to lay blame on the Oregon or Southwestern US hydrologist for the decline in 

skill scores in those regions.  

What, therefore, is responsible for the recent downward trend in skill? The 

previous analysis proves that the objective guidance is not as good a predictor of 

streamflow as it once was. This statement can be decomposed into two parts. First, has 

the relationship between snow data and actual basin snow conditions changed? This is a 

question of data quality and it is possible but highly unlikely that the changes in snow 

measurement technology (i.e., snow courses to SNOTEL) cause snow data to be now less 

accurate than they used to be. One way to test the data-quality hypothesis is to see if the 

trends in skill are reproduced in an independent data set. For example, if poor data quality 

in the NRCS were worsening the water supply forecasts, one would not expect to see 

similar erosion in skill in forecasts based on accumulated COOP precipitation.  

Figure 8.7 shows the long-term trends in 1 April forecasts based solely on snow 

(heavy dashed) and precipitation (solid) data, as well as the combined snow+precipitation 
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hybrid system (light dashed). This figure shows that throughout most of the period of 

record, snow data has performed better than precipitation data at forecasting streamflow. 

Only in the most recent period has precipitation matched and overtaken snow as the most 

skillful predictor. In the early period, snow data accounted for almost all of the skill in the 

combined forecast system but after the 1980s, the skill of the snow and 

snow/precipitation hybrid systems diverge. In the virtual world of this experiment, it 

seems like in the early part of the record, the NRCS (using the snow hindcast system) 

could have done without guidance from the NWS (using the accumulated precipitation 

hindcast system). However, after the 1980s, both “agencies” have equally skillful 

guidance, and they both benefit by “coordination”.  

Regretably, one cannot draw firm conclusions about the potential erosion of 

forecast skill due to NRCS data quality issues. The decline in skill of the snow-based 

hindcast system could be due to a change in snow-rainfall precipitation partitioning 

(Serreze et al. 1999). It is also possible that the normally more accurate, and thus more 

“bullish” snow hindcast system performed much worse than a normally less accurate and 

thus more “conservative” precipitation forecast system only in a recent set of highly 

unusual years.  

The second question posed earlier in this chapter asks whether the relationship 

between actual basin snow conditions (as a natural indicator) and seasonal streamflow 

changed? In figure 8.7, the quality of the snow measurement may be the same, but a 

given state of snowpack no longer precedes a certain character of seasonal streamflow. 
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There are several reasons why this might be the case, and the issue is explored further in 

the next several sections.  

  

8.3 Are Western US streamflows becoming more erratic?  

 

When natural indicators change in ways that are unusual in the modern 

instrumental record, the antropogenic release of “Greenhouse Gases” is often suspected 

as a possible forcing mechanism for this change. As mentioned in chapter 1 and section 

3.6, humans are currently engaged in what has been described as a grand irreversible and 

“uncontrolled experiment whose [environmental] consequences could be second only to 

global nuclear war” (Fraser 1999). Since World War II, the emission of carbon dioxide to 

the atmosphere has increased almost sevenfold, due to the burning of fossil fuels. This 

rate could increase dramatically during the impending modernization and 

industrialization of developing nations. Carbon dioxide in the atmosphere contributes to 

the “Greenhouse Effect” and could raise the Earth’s temperature at an unprecedented 

rate. The resulting changes on the rest of the climate system are, as of yet, uncertain.  

Water managers have been increasingly concerned about the expected impacts of 

climate variability and anthropogenically induced climate change on the hydrology of the 

Western US (Dracup 1977). As suggested by historical data analyses and model 

simulations, these variations and changes include shifts in the balance between snow and 

rainfall, resulting in earlier snowmelt and reduced late summer streamflows (e.g., Hamlet 

and Lettenmaier 1999; Leung and Wigmosta 1999; McCabe and Wolock 1999; Mote 
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2003a,b, 2005), and the possibility of an intensification of extreme hydrologic events 

(i.e., droughts and floods; Hamlet and Lettenmaier 1999; NAST 2000). Such climate-

induced changes could add another layer of complexity to the management of natural 

resources in an already challenging environment of changing demographics and 

competing interests. Climate change may interfere with what were once reliable natural 

indicators of future streamflow, leading to degradation in the streamflow forecasts. 

It is not the place nor ability of this study to make statements about the origins, 

causes, impacts or expected future behavior of climate change in the Western US. 

Nonetheless, climate stationarity is a fundamental assumption of the statistical 

forecasting techniques used by hydrologists. A stationary process is a random process 

where all of the statistical properties (e.g., the mean and variance) do not vary over time. 

In other words, the future is entirely random but it bears the same overall characteristics 

of the past. If climate is not stationary, that is, it exhibits low frequency shifts or is 

experiencing monotonic change, the implications for statistical water supply forecasting 

are serious. 

Several studies have focused on detecting trends in mean streamflow and in the 

magnitude of extreme events. Lettenmaier et al. (1994) found upward trends in monthly 

and annual streamflow volumes across most of the US during 1948-1988. Mauget (2003) 

identified an increase in annual streamflow volumes after the 1970s, primarily in the 

Southeast, New England, and the Corn Belt. Several other studies (Lins and Slack 1999; 

Douglas et al. 2000) found that these increases were due to increasing low and moderate 

flows, not high flows. McCabe and Wolock (2002) reinforced these studies, documenting 
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a dramatic national increase in median and minimum flows after the mid-1970s.  These 

studies together suggested that the hydrology of the US was becoming more benign, with 

low flows becoming higher and high flows staying the same, despite the skyrocketing 

costs of flood damages (Pielke and Downton 1999). Groisman et al. (2001) asserted, 

contrary to other studies, that heavy precipitation events did increase and the increases in 

high streamflows were detectable when one regionalized the data, as opposed to doing a 

site-by-site analysis. Specifically in the Western US, however, Groisman et al. (2001) 

asserted that there were no trends in streamflow volumes because less extensive snow 

cover was offsetting heavier precipitation. None of the above authors detected 

widespread significant trends in Western US streamflow; significant trends have mostly 

been observed in the eastern two thirds of the US.    

No previous study, however, has investigated the trends in streamflow variability 

and persistence. Long term changes in the mean may have only subtle societal and 

environmental impacts, but changes in the magnitude and sequencing of extreme events 

could have direct impacts on ecosystems and natural resource managers (e.g., Voortman 

1998). The hydrologic community has addressed streamflow variability and persistence, 

but mostly in the context of developing statistical forecasting models and defining 

hydrologically homogeneous regions (Vogel et al. 1998). These studies assumed that 

streamflow persistence was caused by carryover storage of water in lakes and below the 

land surface and that precipitation, in general, is random, stationary, and lacks 

persistence.  
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Conventional wisdom among the operational community is that forecast skill 

decreases as streamflow variability increases; Shafer and Huddleston (1984) indicated 

that streamflows were becoming more variable, and this masked improvements in 

average forecast error. A “wild” target is harder to “hit”. If streamflow is, indeed, 

becoming more variable, this might be responsible for the decline in skill of the official 

forecasts.  In addition, statistical forecast procedures work best under typical basin 

conditions; when many consecutive dry years create unprecedented basin moisture 

deficits, forecast skill may suffer. Therefore, the next section tests whether streamflow 

variability and persistence are changing. If it is, then following sections will address 

whether water supply forecast trends identified in the previous section are related to 

changes in streamflow variability and persistence.  

 

8.5 Observed trends in streamflow variability and persistence 

 

As mentioned in chapter 2.6 Slack and Landwehr (1992) identified a subset of 

“Hydro-Climatic Data Network” (HCDN) streamgages as being free of significant human 

influences and therefore appropriate for climate studies. In the continental Western US, 

there are 475 such points west of 104.5  west longitude, excluding Alaska and Hawaii. 

Of these HCDN locations, a subset of 141 still-active gages with 50 or more years of data 

was chosen. HCDN sites with “constant” yet significant irrigation withdrawals or 

regulation, as indicated by the HCDN metadata, were removed from this analysis.  
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Monthly streamflow data were aggregated into April-September flow volumes. 

This period corresponds to the snowmelt and irrigation season across most of the interior 

Western US. For many locations this is also the target season of the NRCS water supply 

outlooks.  Summer flows correlate very highly with annual flows in the interior Western 

US. For example, almost 90% of the annual flow on the East River at Almont, Colorado 

occurs during April-September. However, this period does not correspond to the primary 

snowmelt period in Arizona and southern New Mexico (December-March) and instead 

reflects baseflow conditions and monsoon-driven variability. Similarly, the Cascade 

Mountains (e.g. Oregon) can experience rain on snow and mid-winter melt before April. 

Analysis of annual flows in those regions may yield different results than those shown 

here. 

 At each streamgage, the variance, lag-1 year autocorrelation, coefficient of 

variation (CV, the standard deviation divided by the mean), mean, and skewness of the 

April-September flow volumes were computed for a 20-year moving window over the 

period 1901-2002. Data had to be serially complete within the 20-year moving window 

for these statistics to be computed; after 1940, at least 100 of the 141 available gages had 

complete data during any given 20-year period. There was a sharp rise in data availability 

beginning in the 1930s. Although pre-1930 data were included in the computation of the 

various long-term moments (i.e. mean, variance, and skewness) mentioned below, the 

results during this early part of the record are highly sensitive to the clustering of sites in 

Idaho and Montana and do not reflect the behavior of the Western US as a whole. 

Therefore, this early period is not focused on in this study. Future researchers may fill the 
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gaps in coverage and extend the period of record by investigating additional indicators 

that reflect hydrologic variability, such as tree rings.  

The 20-year time frame allowed a large enough sample size to develop reliable 

inter-period estimates of the variance and persistence (although a longer period would be 

more suitable for reliably estimating higher order moments such as skewness). It also 

created enough moving-window periods to observe any decadal variability or trends. This 

paper analyzes annual values over 20-year periods and therefore cannot provide any 

information about inter- or intra-seasonal variability and persistence. Future results could 

be generalized across all timescales using wavelet analysis, which investigates the 

changes in the power spectrum of data versus time (Torrence and Compo 1998). For 

example, Cahill (2002) used wavelets to describe the long term increase in short term (< 

2 week) streamflow variability across the US.  

 The variance for each 20-year window was expressed as a ratio, relative to the 

variance of the period of record. If this ratio was greater than one, the period’s 

streamflow was more variable than usual, and if the ratio was less than one, the period’s 

streamflow was less variable than usual. The 20-year moving window lag-1 year 

autocorrelation was used to identify trends in persistence. Negative autocorrelation means 

that wet years tend to be followed by dry years and vice versa (“anti-persistent”) whereas 

positive autocorrelation indicates a tendency for consecutive dry and wet years 

(“persistent”). An increase in persistence implies a shift from high frequency to low 

frequency variability. 
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 To support this analysis, the CV, mean and skewness for each 20-year moving 

window were also computed. The CV is of interest in that it accounts for changes in 

variability associated with changes in the mean (i.e., drier periods tend to have lower 

variability). Each station’s skewness was expressed as an anomaly relative to the period 

of record skewness. Most basins in the Western US have positive skewness, indicating a 

tendency for lower streamflow years to outnumber higher streamflow years and for a few 

unusually large events to have a major influence on the shape of the distribution. 

One objective of this study was to determine if the variability during any given 

period was different from the variability of the period of record. The null hypothesis 

could be evaluated using an F-test. This test, however, assumes that the data are 

independent and follow a Gaussian distribution, the second being a poor assumption for 

skewed flows in the semi-arid Western US.  

Instead, the significance of the change in variability was evaluated empirically. 

For each site, 20 (not necessarily consecutive) years of available data from the period of 

record were selected at random without replacement. The ratio of the 20 random years’ 

variance to the variance of the period of record was computed. This resampling was 

repeated 10 000 times (200 000 random selections of years per site) to obtain an 

empirical distribution of the variance ratio for each location. This size resampling pool 

was chosen because it allows a reliable estimate of the 10% significance level without 

being computationally prohibitively expensive. The observed variance ratio for each 20-

year period was compared to the variance ratios of the 10 000 synthetic periods to 
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determine the probability of obtaining the observed ratio by chance. This same jackknife 

procedure was repeated for the CV, mean, and skewness.  

This sampling technique, which drew randomly from the entire period of record, 

may have underestimated the statistical significance of the result compared to a technique 

that only drew from years outside the 20-year window (e.g., an analysis of 1950-1969 

flows that only randomly selected years before 1950 and after 1969). This more 

appropriate technique, however, would have involved almost two orders of magnitude 

more analysis than the selected technique and thus was computationally impractical. The 

selected technique violates the assumption of independent samples in that it allows data 

to be compared to itself, although the effect on the results is likely to be small.  

 Figure 8.8a shows a time series of the fraction of available stations reporting 

periods of significantly increased variability (solid) and decreased variability (dashed). 

Significance was determined by comparing each 20-year moving window variance ratio 

to the empirically derived distribution and identifying those values that were greater than 

the 90th percentile (increased variability) or less than the 10th percentile (decreased 

variability). The period 1945-1964 was the most geographically widespread period of low 

variability in modern history, with 48% of sites reporting significantly below-average 

variability. During this period, none of the 104 reporting sites in the Western US had 

significantly above-average variability. The variability decrease was most pronounced in 

Idaho and Montana, with decreases also in the Cascades, central California, the Great 

Basin, and the Southwest (see also Figure 8.9, upper left). Increased variability marked 

the period after the mid-1960s, when 29% and 27% of sites reported significantly above-
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average variability in 1982-2001 and 1971-1990, respectively. This variability increase 

was focused primarily in California, the Great Basin, and northwestern Colorado (Figure 

8.9, lower left). From 1976-1995, there was also a small rise in the number of sites that 

had less variability, primarily confined to the Cascade Mountains of Washington and 

Oregon.  

 Figure 8.8b shows a time series of the fraction of available stations whose lag-1 

autocorrelation was greater than (solid) or less than (dashed) +/- 0.30 (approximately 

10% significance for a one-tailed test) in a 20-year moving window. This time series 

shows that in 1936-1955, 26% of sites had high year-to-year persistence. By 1959-1978, 

33% of sites had highly negative autocorrelation, a tendency for wet years to be followed 

by dry years and vice versa. In the most recent twenty years, 28% of the sites had high 

year-to-year persistence, the most widespread of any period of history (Figure 8.9, lower 

right).  

One might expect that the increase in variability in the recent period was 

associated with increases in mean flows (e.g., the 1950s drought was a period of low 

variance). Especially where flows are skewed, one or several exceptionally wet years can 

significantly raise both the 20-year mean and variance. As mentioned in the introduction, 

few authors have been able to detect trends in mean flow in the Western US. 

Additionally, in the analysis performed here, statistically significant changes in the CV 

were very well correlated with changes in the variance, suggesting that the changes in the 

mean had a secondary influence on these results, if at all. Figure 8.8c shows a time series 

of the fraction of available stations reporting periods of significantly increased mean 
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flows (solid) and decreased mean flows (dashed). Generally, periods of high flow (1940s-

1970s) and low flow (1930s-1950s and 1980s-present) do not necessarily match periods 

of high or low variance. Additionally, the spatial patterns of mean and variance trends do 

not match (compare figure 8.9 left and figure 8.10 left).  

Finally, figures 8.8d and 8.10 (right), show the behavior of streamflow skewness 

over time. The late 1940s to early 1970s was a period of relatively high streamflow 

skewness, followed by lower skewness from the 1960s-1980s and a return to higher 

skewness in recent times, especially in northern states. The most recent 20-year period 

had the highest percentage of stations reporting a positive skew anomaly (62%) of any 

period in history while the 1978-1997 period had the most number of sites with 

statistically significant skewness increases (22%). Therefore, there has been an increasing 

tendency towards having many low flow years, punctuated by a limited number of 

relatively high flow years. It is very difficult to develop reliable estimates of higher order 

moments (e.g., skewness) with a limited set of data (e.g., 20 years) so these findings 

should be interpreted with caution.  

The results shown in Figure 8.8 were somewhat influenced by the spatial 

distribution of sites used in this analysis, with a high density of sites in Idaho, Montana, 

and the Pacific Northwest and a sparse network of sites in Nevada and the Southwest. 

There was also a very strong cross-correlation of flows across sites; although the spatial 

correlation varies regionally, in the interior west, sites 650 kilometers apart at the same 

latitude generally have interannual flow correlations of 0.7. This correlation is less for 

sites in the same longitude band, consistent with Cayan’s (1996) investigation of 
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snowpack. Future research should investigate the field significance of these results, 

perhaps by using cluster or principal components analysis.  

It is also possible that autocorrelation, variance, skewness and the mean are 

interrelated and that some configurations (e.g., high autocorrelation and low variance) 

may be naturally easier to achieve than others (e.g., high autocorrelation and high 

variance). Each location’s time series of 20-year moving window autocorrelation, 

variance, skewness, and mean were correlated and the interannual relationships between 

the four characteristics investigated. Although individual sites had large magnitude 

correlations among the different characteristics (e.g., autocorrelation and variance at a 

location may have tended to vary together), there was no obvious spatial pattern or 

regional coherence to these correlations. At best, there was a weak negative correlation 

between mean and skewness (57% of the sites had a correlation between mean and 

skewness less than -0.3) and a weak positive correlation between mean and variance 

(48% had a correlation greater than 0.3). The westwide median correlation between 

autocorrelation and variance was 0.055, far from being statistically significant. This site-

based analysis suggests that it is likely that streamflow variance and persistence change 

independently of one another. It is unknown whether a more sophisticated analysis 

involving regionalization of the data (e.g., Groisman et al. 2001) would reveal clusters of 

sites whose variance and persistence vary together as a region. 

As a representative example of a shift from low variability and anti-persistence to 

high persistence and high variability, Figure 8.11 displays a time series of flows in 

northwestern Colorado. Although individual years may vary, the general pattern of flows 
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is typical of what was experienced throughout Colorado, Utah, and Nevada. The period 

1935-1975 was relatively benign with many years of consistently near-normal flows 

especially from the mid 1960s-1970s. The series of four consecutive very wet years 

(1983-1986) was unprecedented, as was the extended deficit that followed (1987-1994). 

Again, a wet period ensued in 1995-1998 followed by near-record drought conditions in 

2002. The period after 1980 displays very high variability and year-to-year persistence 

whereas prior decades were less variable and less persistent.  

 

8.6 The implications of increased streamflow variability 

 

Decadal timescale changes in streamflow variability and autocorrelation have 

been observed in the streamflow records of the Western US. The 1930s-1950s can be 

described as a period of low variability and high persistence, the 1950s-1970s as a period 

of low variability and anti-persistence, and the period after 1980 as high variability and 

high persistence.  

These various streamflow characteristics were not necessarily varying on the 

same time scales or coincidentally; increased variability preceded increased 

autocorrelation by approximately 5-10 years, which in turn preceded increased skewness 

by another five years. Nonetheless, the various phenomena became “in phase”, making 

the most recent 20 years the only part of the record that was highly variable, highly 

persistent, and highly skewed. 
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 A period of high persistence, variance, and skewness is perhaps the most 

challenging scenario for water managers. For example, a series of consecutive wet years 

(e.g. figure 8.11, 1983-1986) may overwhelm reservoirs and inflate stakeholder 

expectations about the amount of water available. An extended stretch of dry years then 

exhausts storage reservoirs and does not give them a chance to recover (e.g. 1987-1994). 

Smaller reservoirs that do not have multiple year storage capacity would be especially 

vulnerable. In comparison, individual dry years interspersed among wet years are much 

more tolerable.  

These decadal oscillations also have implications for water supply forecasting. 

Statistical streamflow forecasting techniques that use persisted spring and summer 

streamflow as a predictive variable for next year’s flows will lead the forecaster astray 

when the climate regime switches between positive and negative autocorrelation. It is 

unknown at this time whether procedures that use antecedent autumn streamflow (e.g., 

September-November) as a predictive variable to index the effects of soil moisture and 

groundwater variability are also vulnerable to this effect.  

The causes of the recent sequence of flows are unknown. The HCDN stations are 

free of significant human influence, and the signals detected in this study were 

geographically widespread, ruling out changes in basin characteristics, soil properties, or 

local management practices as the causes of changes in variability. It is likely that the 

changes in persistence and variability have climatic origins.  

If the driving factor in this recent variability increase is discovered, it may be a 

source for long-range decadal climate forecasts. Recently, McCabe et al. (2004) 



 

207

explained almost three-quarters of the spatial and temporal low-frequency variability of 

drought across the US using the PDO, Atlantic Multidecadal Oscillation (AMO), and a 

unidirectional trend possibly due to climate warming. Those authors examined the 

frequency of average annual precipitation falling below a particular threshold and did not 

investigate variability or persistence. Nonetheless, future research is necessary to 

determine if the phenomena are related and if streamflow variability and persistence will 

continue to increase.  

The current region of high streamflow variability (California, Nevada, Utah, and 

Colorado) is also known for its low seasonal precipitation predictability (Hartmann et al. 

2002a). In contrast, the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal 

Oscillation (PDO) typically affect Oregon, Washington, and Idaho as well as Arizona and 

New Mexico (Redmond and Koch 1991; Mantua et al. 1997). The mechanism driving 

increased variability could be masking otherwise useful ENSO and PDO-related climate 

forecast skill in this highly unpredictable region.  

 Interestingly, although streamflow variability is on the rise and forecast skill is on 

the decline across the Western US, the spatial patterns of these changes do not match. 

Comparing figures 8.9 (bottom left) and 8.5-8.6 (lower right), streamflow variability is on 

the rise throughout the Great Basin, southern Columbia and Upper Colorado River 

Basins. Variability is decreasing for rivers in Oregon. However, forecast skill is declining 

in Oregon, remaining steady in California and plunging in the eastern Colorado River 

Basin and Arizona/New Mexico (this last region not displaying any significant trends in 

streamflow variability). Increased variability is not sufficient to explain the downward 
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trend in forecast skill, especially when one considers that the NS score is already 

normalized by the variability of the observations (as mentioned in chapter 6.3.1).  

   

8.7 Is spring precipitation becoming more extreme?  

 

Tracing the changes in streamflow variability back to changes in precipitation and 

temperature may be difficult because of the temporal and spatial integrative behavior of 

watersheds. The climate signal may be spread across seasons such that, for example, 

winter (December-March) precipitation variability in California may be rising while 

spring (April-June) precipitation variability is rising in Colorado, resulting in an April-

September streamflow variability increase in both locations. Coincidentally, the 

seasonality of the increased precipitation variability has serious implications for water 

supply forecast accuracy. Given that water supply forecasts are primarily based on 

existing initial conditions (e.g., current snowpack), if extreme (high or low) precipitation 

occurs before the forecast issue date (e.g., 1 April), the forecast is more accurate than if 

the extreme event occurs after the forecast issue date.    

 As shown in chapter 6.3.3, specifically figure 6.4, the improvements in forecast 

skill versus leadtime are closely tied to the seasonality of precipitation. If, 

climatologically, the springtime is a dry period, the 1 April water supply outlooks 

typically perform better than those in parts of the country where springtime is, 

climatologically, the relatively wet period. Church (1935) also identified precipitation 

after the forecast issue date as the primary source of forecast error in any given year. It 
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stands to reason that a decline in 1 April forecast skill could be related to a change in the 

behavior of precipitation that occurs after 1 April. Extreme wet or dry springs can cause 

large disagreements between a regression-based forecast which assumes “near normal” 

conditions for the remainder of the season.  

 Using the weightings described in Table 7.1, and the methodology described in 

chapter 7.2, basin wide Z-score indices of spring/summer precipitation are developed. 

Spring/summer precipitation is defined as the precipitation that occurs between 1 April 

and the end of the streamflow target season. For example, in Arizona where the 1 April  

forecast target season is April-May, precipitation is averaged over April-May. If the 

target is April-September, an index is developed for April-September precipitation. If the 

target is March-July, the index remains April-July. See Table 2.4 for a listing of forecast 

target seasons. When aggregating the individual Z-scores into a basin-wide index, no site 

weightings are used (such as those mentioned in chapter 7.2), i.e., all sites are considered 

equally important.  

 Figure 8.12 shows a scatter diagram of the Weber UT spring/summer 

precipitation index and 1 April forecast error. Wet spring conditions, as indicated by a 

large positive basin-wide spring precipitation index, tend to bring more streamflow than 

the forecasts expected. Dry spring conditions (large negative spring precipitation index 

values) cause the forecasts to overestimate the amount of future streamflow. Spring 

precipitation variability explains more than 60% of the error in the 1 April forecasts at 

this location. The remaining 40% of the error variance could be due to a number of 
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factors including soil moisture deficits, sublimation, unaccounted-for streamflow 

impoundments and diversions, and so on. 

 Figure 8.13 shows the map of the correlation coefficient between the combined 

snow+precipitation hindcast 1 April error and a basinwide Z-score index of 

spring/summer precipitation. Error is defined as observed minus forecast, as opposed to 

elsewhere in this dissertation where error meant forecast minus observed. This was done 

to give a positive orientation between forecast error and spring precipitation. This figure 

shows that throughout almost all of the Western US except the northern Cascades, the 

relationship between spring precipitation and 1 April forecast error is exceptionally 

strong. Most correlations are in the range of 0.5-0.65, consistent with Schaake and Peck’s 

(1985) finding that spring precipitation variability accounted for 50% of the error of the 

historical 1 April forecasts for inflow to Lake Powell. 

 It is now established that streamflow forecast skill is on the decline (chapter 8.3), 

and that extreme spring precipitation events have a negative effect on streamflow 

forecasting skill. The question can now be asked: Are there observed trends in the 

extremity of spring precipitation, responsible for the decline in forecast skill?  

To test this, the Z-scores of individual sites are combined into a basin-wide 

average of spring precipitation “irregularity” as follows. Each site has a spring 

precipitation Z-score for each year, as calculated earlier. This value is then squared and 

all of the squared Z-scores for all sites within a basin are averaged together to form a 

single time series for each of the 29 study basins. The squared Z-score is a measure of the 

variance relative to a period of record mean as opposed to local variance that is relative to 
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a local mean. The distinction is important because if every year within a 20-year moving 

window was identical but very wet, the variance would be zero while the squared Z-score 

would better capture the extremity of the period. Basin-wide spring precipitation 

departures from near normal (i.e., very high or very low) will give this index a high 

positive value. If spring precipitation is near normal, this index will be close to zero. As 

the original Z-score index has a standard deviation equal to 1.0, the squared index has an 

expected value of 1.0. In other words, a spring precipitation irregularity index value of 

1.0 indicates “typical” (that is, neither calm nor extreme) precipitation irregularity. In 

following sections, this squared Z-score index is referred to interchangeably as spring 

precipitation “extremeness” and “irregularity”. 

The average of the spring precipitation irregularity index is then taken over a 20-

year moving window for the period of record. It would have been possible to calculate 

the spring precipitation variance directly rather than the average of the squared Z-scores. 

However, this second-order moment would not be able to detect changes in the first order 

moment. In other words, if every year within a 20-year period had extremely high 

precipitation (high, positive Z-score), the variance of this time series would be low, as 

would a 20-year period with consistently near-normal spring precipitation. However, one 

would expect the water supply forecasts to perform poorly under the first scenario 

compared to the second. The squaring of the Z-score is therefore a better measure of the 

“abnormality” or “irregularity” of spring precipitation and will be more relevant to the 

skill of the water supply forecasts.    
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The Pecos River near Pecos has experienced a very sharp drop in forecast skill in 

recent years. Figure 8.14 (upper left) shows a time series of the 20-year moving window 

precipitation “irregularity” index just described for the Pecos basin. Note the monotonic 

trend towards increasingly “near-normal” spring conditions from 1930 to the early 1980s, 

after which there has been a dramatic rise in the frequency of extreme spring events. 

Spring precipitation on the White CO (upper right) is similarly the most extreme it has 

ever been in the modern record. Other locations, such as the Bruneau, ID (lower left) 

show decadal variability in spring precipitation irregularity, almost out of phase with that 

of nearby Umatilla, OR (lower right).  

Figure 8.14 displays the westwide average of the 20-year moving window spring 

precipitation irregularity indices of all of the 29 study basins. Similar to the Pecos, spring 

precipitation had, on balance across the Western US, become increasingly calm in the 

early part of the record, reaching its most placid and benign state in 1969-1988. In less 

than a generation, westwide spring precipitation irregularity has skyrocketed and is now 

more extreme than any other time in modern history.  

Figure 8.15 shows a map of the spring precipitation irregularity index anomaly 

(deviations from 1.0) for four 20-year periods. Filled inner circles mean that the average 

spring irregularity index for this 20-year period is greater than 1.0. Hollow circles 

indicate an index less than 1.0. Large circles indicate either highly irregular or 

exceptionally calm, depending on whether the circle is filled or hollow, respectively. In 

1961-1980 (lower left), the entire Western US except Southern Idaho and Northeastern 

NV had very reliably near-normal spring precipitation, particularly in the Colorado basin, 
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the Southwest US and Cascades. After 1981, almost exactly mimicking the pattern in the 

decline of official forecast skill (figure 8.5-8.6 lower right), spring precipitation has been 

highly irregular in the upper and lower Colorado basins and in the Pacific Northwest.  

 

8.8 Summary 

 

 The overall picture that emerges from the findings of Chapter 8 is as follows: 

seasonal streamflow variability is on the rise in the central Western US, from California 

through Nevada, Southern Idaho, Utah, Colorado and northern New Mexico. Forecast 

skill is declining in the Colorado and Rio Grande Basins, although it is rising in 

California and Nevada. Therefore the increase in streamflow variability cannot entirely 

explain the trends in forecast skill otherwise forecast skill would be declining in all of the 

regions just mentioned. Additionally, skill would not be declining, as it is, in regions 

where streamflow variability is not on the rise (i.e., Arizona and New Mexico).  

Although this study did not test it, it is likely that Californian fall and/or winter 

precipitation extremity is now higher than it was before whereas spring precipitation 

extremity is diminishing. By 1 April, the Californian hydrologist was aware of the 

anomalous snowpack condition and as a result issued extreme forecasts that performed 

well compared to a baseline forecast of near-normal.  

In contrast, the forecasters for the Colorado and Rio Grande basins believed they 

had an accurate assessment of conditions by 1 April, but extreme precipitation events 

commonly occurred after the forecasts were issued. The resulting turnabouts (or 
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intensifications) damaged the hydrologists’ credibility, because forecasts increasingly 

failed to match the observations.  

 This study cannot explain causes for the rise in extreme spring precipitation 

situations but can only recognize the existence of a trend. Water supply forecasters would 

be keenly interested in knowing if the variability in streamflow and spring precipitation 

will subside (indicating an oscillation), remain high (a secular change) or push even 

higher (due to greenhouse warming).  

The non-stationarity of climate throws into question the validity of forecast skill 

as a metric for the performance of the agencies or individuals involved with water supply 

forecasting. For example, the NRCS has 5-year quantitative goals to decrease the error of 

its water supply forecasts, as well as goals to increase in the numbers of forecasts 

produced per year. While forecast technology can make minor improvements, it has been 

shown here that overall water supply forecast skill is almost completely dominated by 

interannual climate variability, especially variability in precipitation that occurs after the 

forecast issue date. Perhaps the agencies can develop climate-adjusted skill scores (such 

as the improvement over the simple objective hindcast system used in this paper). Users 

and water managers, however, only care about the magnitude of forecast errors, not their 

underlying causes, and may not be as forgiving.   
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Figure 8.1 Scatter diagrams of period of record NS scores for hindcasts issued 1 
November using a variety of configurations. All hindcasts are developed using the 
synthetic snow+precipitation+climate system described in section 7.6. Configurations 1-4 
are as follows: 1) Excluding the PDO index, 2) Including the PDO index, 3) Proper 
subsetting by PDO state, 4) Mismatched subsetting by PDO state. Subpanels above 
compare configurations 1,2 (top left), 1,3 (top right), 2,3 (lower left), and 3,4 (lower 
right). The diagonal line indicates equal skill. See text for discussion.  
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Figure 8.2. Same as figure 8.1 except for hindcasts issued 1 January.  
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Figure 8.3. Trends in westwide official (top) and synthetic (combined 
snow+precipitation, bottom) forecast skill over 20 year moving windows, and by lead 
time. Data must be serially complete in 20-year window to be computed for a basin. At 
least 8 basins must have a valid NS for a value to be shown. Data is plotted at the end 
year of the 20-year moving window (i.e. 2000 = 1981-2000).  
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Figure 8.4 Trends in westwide official (dashed) and synthetic (solid) forecast skill 
anomalies over 20 year moving windows for March (top) and April (bottom) forecasts. 
Forecast skill anomalies are relative to the skill of each system during 1960-2000. Plot 
format follows that of figure 8.3.  
   
 
 



 

219

Figure 8.5 Skill anomalies of the official 1 April water supply forecasts for four 20-year 
periods, relative to 1961-2000. Filled circles indicate negative skill anomaly, empty 
circles indicate positive skill anomaly. Circle diameter is linearly proportional to anomaly 
magnitude. An outer reference circle of skill anomaly magnitude of 0.3 is provided. 
Missing outer circles (e.g. Arizona in 1951-1970) indicate insufficient forecasts available 
for analysis (i.e. the forecasts are not serially complete during this 20-year period).  
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 Figure 8.6. Same as figure 8.5 except for 1 April synthetic 
snow+precipitation synthetic hindcasts.  
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Figure 8.7. Time series plot of 1 April westwide average NS skill score during a 20-year 
moving window period. Skill is shown for the precipitation-based (solid) and the snow-
based (dashed) synthetic hindcast systems. The performance of the hybrid 
precipitation+snow based hindcast system is shown by the top-most line.  
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Figure 8.8. A: Time series of the fraction of western US streamflow stations reporting significant increases 
(solid) or decreases (dashed) in 20-year moving window variance compared to the period of record. 
Significance is defined as the 10th  and 90th percentiles. B: Fraction of stations reporting interannual lag-1 
year autocorrelation of greater than 0.3 (solid) or less than –0.3 (dashed). C. As panel A for the mean. D. 
As panel A for the skewness. The bottom X-axis indicates the start year of the 20-year moving window and 
the top X-axis indicates the end year. 



 

223

 Figure 8.9 Maps of streamflow variance ratio significance (left) and autocorrelation (right) for three 20-
year epochs (top, middle and bottom). Upward pointing triangles indicate positive autocorrelation or 
increased variance relative to the period of record. Downward pointing triangles indicate negative 
autocorrelation or decreased variance. Filled symbols indicate autocorrelation greater/less than +/-0.3 or 
statistically significant variance departures. The size of the symbol is proportional to the magnitude of the 
departure. 
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Figure 8.10 As figure 8.9 except for the mean significance (left) and skewness 
significance (right). See figure 8.9 for symbol definitions. 
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 Figure 8.11 Time series of April-September flow at the White River near Meeker, 
CO (USGS ID 09304500) from 1910-2002. Units are millions of cubic meters 
(1.2335 MCM = 1 k-ac-ft) 
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Figure 8.12. Representative scatter diagram of spring 

precipitation with 1 April forecast error (observed minus 

forecast) for the synthetic snow+precipitation hindcasts. See 

text for explanation of the spring precipitation index. 

Hindcasts are for the Weber River in Utah.  
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Figure 8.13. Map of correlation coefficients between 1 April 

synthetic forecast error and a spring precipitation index. Outer 

reference circle indicates correlation of 1.0. The majority of 

correlations fall in the range of 0.5-0.65. Map follows the 

convention of figure 7.5 
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 Figure 8.14 a Time series of the 20-year moving window average of a spring 
precipitation irregularity index (see text for definition) for four locations around the 
Western. On average, a value of 1.0 is considered normal variability. High values 
indicate unusual/extreme spring precipitation events (wet or dry) whereas low values 
indicate spring precipitation reliably near normal.  
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Figure 8.15. Westwide average of the 20-year moving window average 

spring precipitation irregularity index. Compare with figure 8.4 and 8.7. 

Spring precipitation was most “calm” in 1969-1988 and most “extreme” in 

1983-2002.  
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Figure 8.16. Spring precipitation irregularity for four 20-year periods. Filled circles 
indicate extreme spring conditions (SI>1.0), empty circles indicate calm spring 
conditions (SI<1.0). The outer circle is a reference circle for SI 0.45 or 1.55.  This figure 
shows that spring conditions in the Southwest, Colorado and Pacific Northwest were 
exceptionally calm in 1961-1980, but in 1981-2000 extreme springs have occurred in the 
Colorado River Basin and Pacific Northwest Cascades. Compare panel 4 with forecast 
skill anomalies in figure 8.5-8.6 
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9. AN OPERATIONAL CLIMATE-BASED WATER SUPPLY OUTLOOK 

 

9.1 Introduction  

 

The previous section documented the very important role of climate variability in 

water supply forecast skill. Forecast skill is at the mercy of a sometimes placid but 

oftentimes erratic climate. The effect of human factors on forecast skill, such as the 

choice of forecast methodology or changes in data quality, are minor in comparison to the 

effects of the character of precipitation after the forecast issue date. Understanding and 

being able to predict future precipitation variability should be a key priority of water 

supply forecasting agencies. Indeed, as mentioned in chapter 5.2, hydrologists have been 

trying to take advantage of climate forecast skill for almost as long as climate forecasts 

have been issued.  

This dissertation has recognized the existing scientific basis for climate forecasts 

and has measured the expected skill of a climate-based long-lead water supply outlook.  

Scientific understanding and technical expertise, however, are only some of the key 

ingredients to a successful operational product. Conceptually and technically, very little 

prevents the NRCS from issuing water supply outlooks with longer leadtimes than those 

currently issued. Perceptually, several barriers remain. This chapter describes some of the 

operational issues associated with the development of a new pre-season water supply 

outlook. It draws from Pagano and Garen (2005a) and its intended audience is operational 

water supply forecasters and forecast agencies.  
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9.2 “Climatologists are from Venus, Hydrologists are from Mars” 

 

 Although some aspects of forecasting are universal, climate based streamflow 

forecasting is very different from traditional snow based streamflow forecasting in 

several respects. Although nothing as dramatic as a “paradigm shift” is necessary, the 

hydrologist may need to develop additional skills, or develop a different frame of 

reference while issuing climate-based water supply outlooks.   

 For example, figure 7.10 effectively illustrates a contrast between climate and 

snowmelt hydrology. The correlation between snowpack and streamflow is so strong that 

it is relatively easy to believe that the relationship is (almost) deterministic. By 1 April, 

an exceptionally heavy snowpack is virtually guaranteed to produce proportionately high 

streamflow, and similarly, low snowpack yields low streamflow. Before December or 

January, the hydrologist has little information “on the ground” upon which to base a 

forecast.  

In contrast, the correlation between climate and streamflow is marginally 

significant, and one must think of the relationship probabilistically.  While climate 

forecasters may find it loathsome to produce long-lead deterministic climate forecasts, 

many hydrologists fear that users might not accept a probabilistic streamflow forecast of 

this skill level, thinking that users would view them as “vague”, “hedging”, or “non-

committal”.  
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Hydrologists simply cannot describe a streamflow forecast issued in September in 

terms of “102% of normal” as they would a forecast issued in April. It becomes too 

tempting to describe such small shifts as a forecast of “we’re looking at near-normal 

conditions this year”, a gross distortion of the true situation of large forecast uncertainty. 

Hydrologists should ask themselves if they are comfortable conversing in probabilistic 

terms as a climatologist would.  The ultimate test occurs when the hydrologist must issue 

an “equal chances” or “climatology” forecast (i.e., the outlook is completely uncertain), 

without a sense of failure, of “giving up” too easily, and “letting down” the users.  

Hydrologists are also aware of the institutional barriers to using probabilistic 

forecasts.  Many reservoir operating rules require a deterministic streamflow value. 

Water managers seeking to implement new dynamic operating procedures based on 

probabilistic forecasts encounter resistance from decades of tradition and external 

pressures to maintain consistency in operations. Such resource management, in the face 

of many highly conflicting interests, can result in rigid agreed-upon management 

practices, lest one party believe a new course of action is being taken at their expense to 

the benefit of others. Although some sophisticated water managers do consider risk and 

appreciate information about forecast uncertainty, a number of difficult challenges 

remain to those attempting to communicate probabilistic streamflow forecasts effectively. 

Some hydrologists would prefer not to issue a forecast that they suspect the user could 

not use or would misinterpret (Pielke Jr 1999). The nature and scope of these challenges 

are explored further in the next section. 
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There is also a spatial scale contrast between climate forecasting and streamflow.  

The strong correlation between snowpack and streamflow requires close scrutiny of small 

spatial variations in snowpack when forecasting. As a result, hydrologists generally 

frown upon forecasting using snow measurements outside a basin’s boundary.  To the 

most extreme case, forecasters balk at using snow in central Arizona to forecast New 

Mexico streamflow although a weak correlation exists. Hydrologists lack knowledge 

about what new climate indices (e.g., the Arctic Oscillation, the Quasi Biennial 

Oscillation, Solar Cycles, etc.) are “in” their basin so that it makes sense to consider them 

when forecasting or which ones are “outside” of their basin and are spuriously correlated. 

At the opposite end of the spectrum, climate forecasters typically focus on large-

scale continental, if not global, patterns when making their forecasts.  If the contours on a 

national forecast map match the observed contours, except that they are displaced, for 

example, 1000 km to the east, it is generally thought of as a successful forecast.  If the 

connection between climate and streamflow is to be made, streamflow forecasters will 

need to think “bigger” than they typically have. 

 

9.3 On cultivating skepticism, combating pessimism, retaining credibility 

 

While very long-lead water supply forecasting requires proficiency in climate 

variability, it also demands expertise in probabilistic forecasts and concepts. Although 

nothing prevents the generation of short lead-time probabilistic forecasts, the uncertainty 

in long-lead forecasts brings the issue to a head. 
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The water supply forecaster who issues a highly uncertain probabilistic climate-

based streamflow forecast should be prepared to engage users who demand that the 

forecaster “come clean” and tell them “what the forecaster really thinks is going to 

happen”. This discussion is, of course, ill-framed because all forecasts are at their root 

probabilistic. Deterministic forecasts are probabilistic forecasts with zero error bounds 

(i.e., complete confidence). A deterministic forecast may also be some point along the 

probabilistic forecast distribution, arbitrarily chosen by the forecaster (e.g., the mean, 

median, or mode). 

The danger in allowing the forecaster to choose the “one number” is that the 

internal risk model of the forecaster may be different from that of the user. Unless the 

forecaster is intimately familiar with the user’s operations, the forecaster is not qualified 

to judge what level of risk the user should accept. It is not the role of the forecaster to 

determine if and how water managers should use probabilistic forecasts to manage risk. 

Ultimately, the forecaster’s efforts should be focused on quantifying and issuing the most 

unbiased, informative, and useful forecast possible (as discussed by Murphy 1993). At 

the same time, Pielke Jr (1999) asserts that the forecaster should not necessarily be 

completely independent of the user in that “A view held by some– that forecasters 

forecast and what others do with the forecasts is their responsibility– no longer seems 

tenable”.  

While the scientific literature has repeatedly shown that probabilistic forecasts are 

more appropriate and articulate than deterministic forecasts, the operational hydrology 

community is divided concerning the perceived low user demand for probabilistic 
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forecasts and their inability to interpret them. In a recent case, a southwestern water 

manager, the Salt River Project, commissioned the development of an advanced climate-

based water supply forecasting tool, but the user then developed a post-processor to 

convert the probabilistic output into a deterministic forecast. As a counter example, Baker 

(1995, quoted in Pielke Jr 1999) found that “people are more capable of comprehending 

and using at least certain types of probability information than is usually noted in the 

information processing and subjective risk literature”. In other words, hydrologists 

underestimate users’ exposure to and understanding of probabilistic forecasts.  

If confronted with a user demanding a deterministic forecast, the hydrologist 

should consider if the user, in asking for the uncertainty to be removed from the forecast, 

tacitly wants the uncertainty to be removed from nature. After all, given enough time, 

money, satellites, and climate indices, one should be able to come up with the perfect 

forecast. The user, dissatisfied with the agency forecasts’ large uncertainty, may seek out 

alternate opinions among, for example, the outputs of individual forecast tools or private 

consultants.  

While it can be difficult to distinguish this user from the sophisticated user who 

accesses as much information as possible to supplement the official forecast, the former 

may suffer from “confirmation bias”. This is a type of natural selective thinking 

encountered in a variety of contexts whereby one tends to notice and to look for what 

confirms one's beliefs and to ignore, not look for, or undervalue the relevance of 

contradictory evidence (Kahneman et al. 1982). Regrettably, one hydrologists’ 
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“confirmation bias” is another’s “human expertise”. It is difficult to objectively self-

assess whether one is “gifted” or “fooling oneself”.  

The most dangerous combination is a user with a confirmation bias who relies 

upon forecasters who suffer from their own form of confirmation bias and who thus are 

willing to “go out on a limb” to attract customers with very confident (and thus 

presumably skillful) forecasts. When this water manager uses a “one number” 

deterministic forecast, which then greatly differs from the observed, the user is likely to 

foist responsibility for any negative outcome back onto the forecaster who presumably 

“read the signals wrong” or did not try hard enough  (i.e., “they blew it big”, Foster 

1997). 

Some operational water supply forecasters are skeptical of climate forecasts, often 

because of an instance in which the individual put faith in a climate outlook, and this 

resulted in undesirable consequences and regret.  The episode of the 2000/2001 La 

Niña/cool PDO and the ensuing Pacific Northwest drought described in chapter 5.4 is an 

excellent example.  Although all objective climate-based guidance pointed towards a wet 

winter, 2001 tied or broke records for the driest year on record in the Pacific Northwest. 

Many streamflow forecasters have a “What about 2001?” anecdote readily available as a 

justification as to why they do not rely on climate forecasts more heavily. 

Forecasters and users alike must accept that, since the relationship between 

streamflow and climate is probabilistic, “No one can win them all.” The threat of having 

a forecast “bust”, however, strikes fear into all but the most steeled hydrologists. As 

Lewitt (1995) describes this situation: “[The event is not] entirely predictable, though it is 
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possible to calculate the ranges of probability. Still, in every range there is the one in a 

billion chance, the blind shot that seems so improbable that we ordinarily discount it. And 

when it does happen, our sense of fair play is often more injured than our actual 

conditions.” Who accepts responsibility when nature does not obey the predictions – the 

climate forecaster, the hydrologist, or the user? Given sufficiently negative consequences, 

even a long record of appropriate decisions can be negated by a single “bad” decision.  

Over the long term, however, if the climate information is properly used, the streamflow 

forecasts should improve in general. 

While important, the Pacific Northwest example should not be overstated. At the 

opposite end of the spectrum from the user trying to strip nature of its uncertainty is the 

one who believes that long range predictability is impossible. One might encounter a 

hydrologist who perceives that “making a streamflow forecast in September, before any 

snow has accumulated, amounts to swinging before the ball has been pitched. One is 

bound to strike out.” 

Such hydrologists may feel Schadenfreude (malicious joy) when a forecast 

disagrees with the observed because it confirms their negative impressions of climate 

forecasts and releases them from any need to change their current operations. A forecast 

user may adopt the same mis-perspective that if the future is completely uncertain, there 

is no need to deviate from business as usual. Even if a catastrophic event occurs, such 

users feel absolved of responsibility, as the disaster was an unforeseeable “Act of God”. 

The use of fixed reservoir operating “rule curves” operates under the principle of 

minimizing risk in the face of complete future uncertainty. The reality of climate 
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forecasts lies somewhere in between the extremes of complete uncertainty and complete 

predictability. 

One key to interpreting and using probabilistic forecasts is to have a clear 

quantitative understanding of forecast uncertainty.  Often, users have only a subjective 

notion of how close the observed ought to be to the forecast to consider it acceptable.  If 

the observed deviates too far from this subjective tolerance, then the user denotes this 

forecast as a “bust”.  Whether a forecast is a “bust” or not, however, depends on whether 

the observed lies outside reasonable error bounds, which themselves depend on the 

forecast uncertainty. Users must be fully cognizant of this interrelationship to understand 

the magnitude of possible deviations of observed from forecast. In the end, there are no 

“bad” probabilistic forecasts, only unlikely outcomes (of course, Murphy (1978,1993) 

and Murphy and Epstein (1967) might argue that there are bad, more specifically 

inappropriate, forecasts when hedging occurs but this is a separate issue). 

A second key to understanding and using probabilistic forecasts is to realize that 

the chance of the observed ever equaling the deterministic forecast is essentially zero.  

Even under the best circumstances, one will always observe more or less than the forecast 

quantity, with probabilities described by the error distribution. Once this is understood, 

users can then develop, and when necessary implement, contingency plans in the event 

that more or less water is received than the forecast.  This is true regardless of the chosen 

exceedence probability of the forecast quantity.  Difficulties can arise if users and 

managers base their plans only on a single forecast quantity, ignoring the possibilities 

described by the forecast distribution. The danger in interpreting the “one number” 
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forecast as “destiny” is particularly serious when involving long-range climate-based 

streamflow forecasts because the likely error is much higher than late-season snow-based 

forecasts.  

 

 

9.4 Practical advice to water supply forecasters 

 

Climate forecasts have long represented an opportunity to improve seasonal water 

supply forecasts.  For decades, however, climate forecasts have been perceived as having 

insufficient skill and specificity for use in the operational hydrology environment.  While 

climate forecasts may not significantly improve water supply outlooks during the 

snowmelt period, they possess great strength in providing information prior to snowpack 

accumulation, as early as September.  While these pre-season forecasts are highly 

uncertain, they remain an improvement over the next best alternative (i.e., no information 

at all).   

Although some technical barriers to incorporating climate outlooks into the water 

supply forecasts exist, the primary challenge is a perceptual barrier.  To utilize such 

highly uncertain climate information properly, forecasters and users both must 

understand water supply forecasts in probabilistic (rather than deterministic) terms.  

Regrettably, operational hydrologic, climate, and weather forecasters have struggled for 

decades to communicate forecast uncertainty effectively (O’Grady and Shabman 1990; 

Sarewitz et al. 2000). Some progress has been made, particularly in the past decade or so, 
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in the tabular and graphical display of forecasts to communicate more clearly the 

probabilistic nature of the forecasts. Continued efforts along these lines in both the 

academic and operational communities are needed. 

While it is outside of the scope of this dissertation to determine if water managers 

should use long-lead yet uncertain climate-based water supply forecasts, it is safe to say 

that operational forecast agencies will inevitably start issuing them. Water supply 

forecasts were originally issued first in April, with March forecasts beginning in the 

1950s, February forecasts in the mid-1960s and January forecasts in 1980. The historical 

trend towards longer lead-time forecasts suggests that the advent of December (or earlier) 

forecasts is overdue. The question remains not whether but how best to implement this 

system.  

Operational forecast environments typically have several forecasters, each 

responsible for a limited subset of basins within the office’s larger forecast area. At least 

one of these forecasters should have good to excellent proficiency in interannual climate 

variability, with a working knowledge of the tools used by the official climate forecasters 

at the Climate Prediction Center (CPC). During the forecast season this individual is 

encouraged to monitor and/or participate in the forecast development teleconferences 

CPC holds. This hydrologist can then brief the other hydrologists on the climate outlook, 

field questions about the forecast and develop a collective strategy on the implications for 

local streamflow. It might be possible for the climate-savvy forecaster to develop the pre-

season forecast for all areas, alone, with subjective input from the other hydrologists. 
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This forecaster should be able to provide practical advice on using climate 

information in forecast equation development. For example, climate signals are typically 

large scale in nature (e.g., larger than 500 km across) except in coastal regions where the 

effects can be isolated. Therefore, if no streams in a region are correlated with climate 

except one, the correlation is likely spurious. Climate phenomena typically contain much 

persistence from month to month, and their high frequency variability usually does not 

contain relevant information. Three-month averages (such as September-November) of 

climate indices should suffice. In the end, the water supply forecaster must use sound 

hydrologic judgment and avoid the “garbage can” and “hunting and pecking” approaches 

of statistical forecasting (i.e., exhaustively fitting a historical streamflow time series to 

dozens to hundreds of candidate variables to find the best fit). 

Also, one should choose only climate indices that will be available at forecast 

time; currently the Southern Oscillation Index is operationally supported, whereas the 

Pacific Decadal Oscillation is updated irregularly by an academic institution.   

Each office within the water supply forecast environment would benefit from an 

individual also proficient in advanced statistics and probability concepts as well as 

someone with an interest in visual display and communication of uncertain information. 

These members can develop a regionally appropriate strategy for emphasizing forecast 

uncertainty without overly discouraging users. They can also address whether early-

season forecasts require a fundamentally different format from those issued throughout 

the regular season (as discussed in the following section). Depending on availability, the 

agency may partner with the local NOAA Regional Integrated Sciences and Assessments 
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project to serve as a user liaison. These projects have the interest and resources to 

develop and quantitatively test alternative forecast delivery formats. All forecasters 

should have a working knowledge of basic statistics and probability concepts; popularly 

accessible works such as Bernstein (1998), Gilovich (1993), Kahneman et al. (1982), 

Plous (1993), or Pollack (2003) can also assist in giving forecasters basic non-technical 

tools and concepts to help communicate forecast uncertainty to users. 

The forecast environment should already be capable of historical forecast archival 

for the evaluation of forecast accuracy.  There is no reason why this system cannot also 

include more uncertain, early season climate-based forecasts. Retrospective evaluations 

can measure the relative improvements of using climate information over existing 

practices (as was done in chapters 6 and 7). Hindcasting and simulated forecasting 

exercises (such as Baldwin 2001) can help streamflow forecasters build realistic 

expectations (that is, neither overly inflated nor unnecessarily pessimistic) of what will 

occur when using climate forecasts. If effective, there is a good chance that the climate 

forecasts will be properly applied, without regrets. 

 

9.5 Display formats 

 

 Currently, as described in chapter 4.3.1, the primary products of the water supply 

forecasts are tables containing 10%, 30%, 50%, 70% and 90% probability of exceedence 

forecasts, and a map of the 50% probability of exceedence forecast expressed as percent 

of the long term average. While it is possible to display highly uncertain climate-based 
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streamflow forecasts in this format, other formats may convey more useful information. 

The hydrologist is strongly discouraged from simply guessing the users needs, picking a 

favorite format and operationalizing it. Such an approach has a low probability of 

discovering and meeting user needs. Professional user and usability tests to determine the 

actual (versus hydrologist perceived) ability of users to interpret, comprehend and accept 

the products are a must (Nielsen 1994). There is a well-developed body of literature on 

the effective visual display of quantitative information, and Tufte (2001), for example, 

provides many general principles and practical guidelines. While it is tempting to do so, 

hydrologists should not assume that product development is just “common sense”. 

Trained professionals exist for this task.  

 The format that contains the most quantitative information for a single location, 

variable and target period is the probability of exceedence graph (Barnston et al. 2000). 

This graph displays the volume of seasonal streamflow on one axis and its probability of 

exceedence on the other. Several lines can be drawn. One line for the climatology 

distribution (i.e., the last 30 years of data) and one line for the current forecast are 

generally the necessary minimum. The climatology distribution places the forecast in 

context. The NRCS currently supports horizontal bar charts that approximate the 

probability of exceedence graph (figure 9.1). However, without any historical context for 

the different streamflow levels, the user is left wondering, “How unusual is this forecast 

for 200 kac-feet? Does that streamflow happen often?” CPC also places additional 

information on its POE graphics, such as text about the probabilities that the observed 
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will fall in particular categories, or a time series at the bottom showing the observed 

precipitation for the past several years.  

 Figure 9.2 is a mock POE graph for what the Pecos NM climate-based streamflow 

forecast system (described in chapter 7.5) might have produced on 1 November 1999 for 

March-July streamflow. The solid stair line is the ranking of the historical observations 

from 1961-1990 (using the Gringorten plotting position). The dashed smooth line is a 

normal fit to this climatology distribution (mean 49, standard deviation 30). Other 

distributions, such as a log-Pearson distribution, provide a better fit for streamflow data, 

but the normal distribution is shown here because it corresponds to the shape of the error 

distribution used in the forecast equation. The smooth solid line is the forecast 

distribution (“most probable” 29, jackknife standard error 26.7). This line lies to the left 

of the climatology distribution, indicating a higher chance of dry conditions, due to 

PDO’s cool state and the La Niña. Along the bottom of the graph is a listing, by 2-digit 

year, of the volumes of the past 10 years of streamflow. For example, March-July 1999 

(“99”) had observed flow of 57 kac-ft, and 1997 (“97”) had 110 kac-ft.  

Several problems are immediately evident in this graph. The normal distribution 

is a poor fit to the 1961-1990 climatology, especially below 20 or above 80 kac-ft. The 

forecast is also unrealistic at the tails of the distribution. This forecast indicates that there 

is a 15% chance of less than zero flow, a physically impossible outcome. 

Currently, the forecast development and display format is such that NRCS 

operational forecasters would only know that the 90% of exceedence bound is negative 

(see table 4.1). They would “fix” this problem, often by improvising a new lower bound 
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of the forecast. They might use a common rule of thumb, e.g., half of the value of the 

70% exceedence bound. In this instance, the 70% exceedence volume is 15 kac-ft, and 

the improvised 90% exceedence volume would be in the neighborhood of 8 kac-ft. 

Unfortunately the NRCS forecast environment is not integrated with a database of 

historical streamflow data and the hydrologists would not even realize that 8 kac-ft is still 

too low of a forecast because it is much less than the lowest observed flow on record.  

If the water supply forecaster decides to publish a continuous POE graph such as 

this, the “fix” described above is no longer a viable option. The forecast distribution must 

automatically take a form that produces positive and realistic values across its entire 

range. The CPC encountered this issue in their precipitation forecasts, especially when 

the distributions are very highly skewed (e.g., southern California in summer). CPC 

forecasters have converted their tercile forecasts into complete distributions by assuming 

gamma distributions (e.g., Briggs and Wilks 1996; Wilks and Eggleston 1992). It might 

be somewhat more difficult to apply their methodology to streamflow forecasts because 

Wilks and others assumed little to no skill-based contraction of the forecast distribution. 

Streamflow forecasts issued in April will have very highly contracted distributions and 

this assumption would not be valid. Regardless, the above example illustrates how the 

current operational environment remains focused on the deterministic streamflow 

forecast and is not designed to help the hydrologist accurately articulate probabilistic 

guidance. This will need to change if climate-based water supply forecasts are to be 

issued.  
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Many different products can be derived from the POE plot just shown. For 

example, additional information might be displayed in a table such as Table 9.1. Of 

course, the language in this table is cumbersome and other terminology should be field 

tested with users to see what has the highest chance of correct interpretation.  

 

  

Table 9.1. Sample streamflow guidance based on 1 November 1999 synthetic climate 
based hindcast 
 
Pecos River near Pecos, NM    
March-July Volume 1000s acre-feet 
 
Period of Record mean/median:    52  48 
1961-1990 mean/median:     49  42  
Previous 10 year (1990-1999) mean/median:  69  71  
Dry/Wet tercile boundaries for 1961-1990:  36  62 
Driest/Wettest year on record:   11 (1950) 153 (1941) 
 
Forecast:  
Percent chance of below/above median (42 kac-ft) 69%  31% 
Percent chance of dry/near normal/wet:  60% 30% 10% 
Percent chance of falling below Pecos Compact (18 kac-ft)  34% 
50% chance of above:    29 kac-ft (60% of 1961-1990 average) 
 
Forecast Confidence:     Low 
1961-1990 standard deviation (C):   30 kac-ft 
Forecast standard deviation (F):   27 kac-ft 
Forecast distribution compression (1-F/C):   0.10   

    This table begins with several historical statistics to place the current forecast in 

context. For example, compared to this historical record, the 10 years prior to 2000 were 

extremely wet. An optimistic user might expect a continuation of the trend towards wet 
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conditions. Another user might look at recent years as anomalous and that dry years in 

the near future would mean a return to normal.  

 The forecast in Table 9.1 and figure 9.2 indicates a 69% chance of flows below 

the median of flows during 1961-1990. If the historical record is broken into three 

equally likely categories (terciles), as CPC displays its climate forecasts, there is a 60% 

chance of dry. This “probability anomaly” of 26.7% (60% - 33.3% = 26.7%), is unusually 

strong for a climate forecast. Probability anomalies in the range of 5-15% will be more 

typical in other years for other locations. If the user desires a deterministic point forecast 

(e.g., the “most probable” [sic] forecast) that too is possible. With an interactive forecast 

processor through, for example, the Internet, users would be able to specify the threshold 

they are interested in and find the probability that it will fall below that threshold. For 

example, a fictitious threshold (18 kac-ft) at which junior irrigators in New Mexico might 

get cut off is provided.  

 The quantitative information about the compression of the forecast distribution is 

most likely to appear as meaningless jargon to the user. For example, the historical 

standard deviation of flows is known, as is the root mean squared error of the forecast 

equation during jackknife calibration. The ratio of the forecast distribution width (F) to 

the climatology distribution width (C) is a useful measure of the confidence and expected 

skill of the forecast.  Forecasters could develop a look-up table translating a quantitative 

measure of forecast distribution compression (1-F/C) into a qualitative phrase. For 

example, 0.00-0.1 means “No” forecast confidence, 0.1-0.25 means “Low” forecast 

confidence, 0.25-0.5 means “Moderate”, 0.5-0.75 means “High” and 0.75-1.00 means 
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“Very High”.  The forecaster would have the liberty to degrade the “confidence” rating 

by one category if there are known data quality issues specific to this year’s forecast or if 

other circumstances arise.  

 In terms of visual map-based forecast products, any one of the parameters in 

Table 9.1 could be displayed spatially. Figure 9.3 shows how Dettinger et al. (1999) 

display their climate-based streamflow forecasts. Shown are probability anomalies 

relative to three equally likely categories. The large filled circles in the Pacific Northwest 

in the top diagram indicate a ~60% chance of winter flows in the wettest third of record. 

This dual-map system provides more flexibility than the single-map system of CPC’s 

forecasts, in that one is not required to follow any fixed rules about adding probability to 

one category and removing it from another.  

IRI’s climate forecast format (chapter 4.2.1) is also another candidate for how 

streamflow forecasts might be displayed. While it makes sense to discretize a 

precipitation forecast map into 2x2 degree cells, the interpretation of such a streamflow 

forecast map can be difficult. For example, a grid cell over central New Mexico could 

refer to local conditions such as the Pecos or Santa Fe rivers. It could also refer to the Rio 

Grande mainstem, which has its headwaters in southern Colorado but bisects the city of 

Albuquerque NM. Hydrologic Unit Code (HUC) basins may be a more appropriate 

discretization, as is currently done with the NRCS westwide forecast maps (chapter 

4.3.1). 
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9.6 Summary 

 

In determining what products to serve to users, there are several tradeoffs to 

consider. For example, does one provide as much quantitative information as possible 

and let the user sort out what they require? A danger in providing too much quantitative 

information is that it implies precision and confidence. For example, a statement such as 

“there is a 50% chance that this year will be more than 43.2734 kac-ft” may leave the 

user with the impression that exactly 43.2734 (+/- 0 0.0005) kac-ft is the expected 

outcome. The user is given a different impression if the forecast is framed in terms of “a 

50% chance that flows will be between 30 and 70 kac-ft”. Even if both statements are 

true, the second framing reminds the user of the broader range of possibilities.  

 In order to not imply complete precision in uncertain forecasts, one can choose 

formats that restrict the users ability to derive quantitative information, much as an 

engine governor prevents a driver from driving an automobile too fast. For example, the 

most a user on the Salmon River at Whitebird Idaho, could derive from figure 9.3 is that 

there could be a +10 and +30% higher than usual chance of falling in the wettest tercile. 

One does not know exactly what “wet” means in terms of local streamflow. The water 

manager may end up qualitatively using this information to contemplate the implications 

of a wet (how wet?) scenario but may not act.  

 Ultimately, the forecast agencies must give serious consideration to the costs and 

benefits of adopting forecast formats that hobble some users in order to help others.  

Once the agencies determine their objectives in producing long-lead uncertain streamflow 
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forecasts, they must consult with the users to determine the best format to achieve those 

objectives. Lastly, forecast agencies should know that they do not need to “reinvent the 

wheel” when it comes to developing and communicating these new products. With over 

70 years of experience providing users with water supply forecasts, it may be 

institutionally difficult to convince the NRCS that it has anything new to learn about its 

customers. Nonetheless, the NRCS would benefit from the existing wealth of social 

science literature on the subject of communicating uncertain climate forecasts to a broad 

range of users (e.g., NRC 1999; IRI 2001).  
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Figure 9.1 NRCS probability of exceedence bar chart for the Pecos River near Pecos on 1 
January 2003. The length of the bar is proportional to the volume associated with the 
forecast at various probability of exceedence levels. The numbers to the right of each bar 
are the volumes as percent of the long term average flow (58.0, as shown to the left). The 
number in parenthesis to the right of the gray bar is the volume of the 50% probability of 
exceedence forecast, in kac-ft.  
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Figure 9.2 Example alternative water supply probability of exceedence 
diagram. See text for further discussion. Volume is on the X-axis and 
probability of exceedence is on the Y-axis. Shown are the long-term 
climatology, the climatology fitted to a normal distribution as well as the 
shifted forecast distribution (based on the synthetic climate-based hindcast 
that would have been issued 1 November 1999). Along the bottom are the 
previous 10 years (i.e. 99 = the year 1999) of flow plotted on the X-axis at 
their respective observed seasonal flow volumes.  
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Figure 9.3. Example of a climate-based streamflow forecast map. Original caption from 
Dettinger et al (1999): Anomalous probabilities of occurrence of seasonal-mean 
December-March flows in the (a) upper tercile and (b) lower tercile of historical flows at 
selected rivers in the conterminous United States, based on historical flows during 
tropical La Niña episodes. Black dots indicate rivers with probabilities at least 10% 
greater than the 33% probabilities expected of a random sampling (that is, greater than 
43%); white dots indicate rivers with probabilities at least 10% less than the expected 
33% (that is, less than 23%); dots are scaled so that the radii are proportional to the 
probability in excess of 33% and small crosses indicate rivers that do not reach 
probability thresholds for the dots.  
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10. CONCLUSIONS AND RECOMMENDATIONS 

 

 This dissertation investigated the relationship between climate and operational 

hydrology and the NRCS. It reviewed past studies of the impacts of major climate 

phenomena on the Western US, as well as past attempts to link climate forecasts and 

water supply forecasts in the operational environment. El Niño, in particular, has a well-

understood influence on western hydroclimatology, favoring wet conditions in the Lower 

Colorado Basin and New Mexico and favoring dry conditions in the Pacific Northwest 

and Cascades. El Niño impacts in the central Western US from California through 

Nevada, Utah and Colorado remain under study but the general sentiment is that the 

effect in those regions is weak at best or only isolated to special circumstances. The 

Pacific Decadal Oscillation is a popular but not well-understood phenomenon that, 

spatially and seasonally, has approximately the same influence on Western US 

precipitation as El Niño. A limited number of studies suggest the North Atlantic 

Oscillation may have upstream impacts on the Western US, but this dissertation found 

unpromising correlations with water supplies.  

This dissertation also documented the history of operations oriented research in 

hydrology and climatology, described the roster of operational forecasting tools and 

traced the revolution of a forecast cycle. Methodologically, climatologists are more 

sophisticated in their statistical forecasting tools and have had much more success than 

hydrologists at operationalizing dynamic simulation modeling. In this respect, 

hydrologists can make rapid technological progress by adopting (versus developing 
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anew) advanced simulation modeling or statistical forecasting methodologies. Both 

operational environments are time critical and harried, and if climate information is to be 

integrated into water supply forecasts, it must be done seamlessly and conveniently.  

This dissertation evaluated and diagnosed the accuracy of existing operational 

water supply forecasts. This evaluation is significant in that it is the first westwide 

scientific evaluation of the official forecasts in the 70-year history of the NRCS to appear 

in the peer-reviewed literature (Pagano et al. 2004b). It reviewed previous studies and 

outlined a useful methodology for meaningful evaluations of water supply forecasts. The 

results confirmed and quantified intuitive notions about the evolution of forecast skill 

versus leadtime. It documented the strong relationship between forecast error and 

subsequent precipitation after the forecast issue date. It discovered a previously unknown 

tendency for low forecast skill in the Oregon cascades and the western Great Plains.  

Next, an objective system to generate synthetic hindcasts that mimic the behavior 

of the operational forecasts was developed. Using accumulated precipitation and snow 

data, this system produced hindcasts with an exceptional correspondence with the official 

forecasts and had comparable skill. With this system, sensitivity tests were conducted to 

determine the relative merit of including climate information at various times of the year. 

In April, climate information has very little to offer the already highly skillful snow and 

precipitation-based water supply outlooks. In January, climate contributes a considerable 

amount of skill to the forecasts and by November, climate information accounts for 

almost all available forecast skill. The skill of these pre-season forecasts is very low but 
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not zero in many locations. The forecasts are highly uncertain but they represent an 

improvement over the next best alternative of not having any information at all.  

This study addressed the methodological question of whether developing separate 

forecasting equations is an effective strategy for dealing with decadal variability in 

climate.  The PDO index does improve forecasts in the Pacific Northwest and Southwest 

when it is used as a variable in a regression equation. In contrast, subsetting calibration 

periods by PDO state and then selecting among different forecasting equations based on 

the current PDO state is a poor strategy. In some regions, always accidentally selecting 

the “wrong” PDO equation yielded better forecasts than always choosing the “correct” 

PDO equation. The PDO subsetting strategy does not appear to be a viable methodology 

for producing operational climate-based water supply outlooks. 

Contrary to conventional wisdom about the long-term improvement in water 

supply forecasts due to investments in observational and methodological technologies, 

this study found that forecast skill was highest from the 1960-1980s. After this period, 

skill dropped sharply, returning to levels last seen in the 1950-1960s. In particular, there 

has been sharp a decline in forecast skill in Oregon and the Colorado/Rio Grande basins. 

The synthetic hindcasts were able to exactly reproduce this decadal variability in forecast 

skill in both space and time, indicating that the rise and fall of forecast skill is 

independent of the human forecaster. Indeed, the synthetic hindcasts showed that in the 

context of the long-term record, forecasts during the 1960-1980s were anomalously 

skillful; the recent decline is more of a return to normal.  
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To diagnose the causes of this skill variability, this study found that there are 

strong decadal trends in observed seasonal streamflow variability and persistence 

(autocorrelation). This result, while previously unknown to the scientific literature, is one 

of the expected impacts of anthropogenically induced climate change. Specifically, the 

1950-1960s was a very calm period with high year-to-year persistence in streamflows. 

The period 1960-1980 had moderate variance but anti-persistence (a tendency to rapidly 

switch between wet and dry years). Flows during the most recent 20 years, however, are 

the most variable of the entire period of record across the Western US. Flows during the 

past 20 years are also more persistent of any others previously seen.  

These trends in seasonal streamflow variability, alone, however, do not 

sufficiently explain the decadal trends in forecast skill because their spatial patterns do 

not match. For example, streamflow variability is on the rise in California, a region where 

forecast skill has remained steady. Forecast skill has declined in New Mexico, where 

streamflow variability is not on the rise.  

Analysis in this dissertation and in previous studies suggested that changes in the 

behavior of spring precipitation might be responsible for the trends in forecast skill. This 

study found that the relationship between spring precipitation variability and 1 April 

forecast error is very strong, explaining 30-60% of the error variance. Declines in 

forecast skill are, indeed, linked to a higher frequency of extreme precipitation events 

(both wet and dry) in the most recent 20 years. Specifically, spring precipitation 

extremity was high from 1930-1950 steadily decreasing over the next 40 years and 

reaching its most calm period around 1960-1980s. During this period, almost no part of 
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the Western US had increased springtime precipitation irregularity and many locations 

had considerably more invariant conditions than usual. In just over 20 years, Western US 

springtime precipitation irregularity soared to levels not previously observed in the 

modern record. Spring precipitation irregularity has increased the most in Oregon, the 

Upper and Lower Colorado and Rio Grande basins, precisely those regions that have 

experienced a sharp decline in forecast skill. No explanation is currently available as to 

why spring precipitation extremity has increased, however. 

The final chapter of this dissertation dealt with issues related to the 

operationalization of climate-based streamflow forecasts. There are many thorny and 

challenging issues that hydrologists will have to address with regards to their perceptions 

of and abilities to effectively communicate highly uncertain probabilistic streamflow 

forecasts. Also provided are some practical advice to hydrologists who would seek to 

generate such forecasts, and gave suggestions on display formats.  

As such, this study has several recommendations:  

 

1) Begin issuing experimental NRCS 1 December water supply forecasts. There 

is a sound scientific and methodological basis for these forecasts, and this study 

has outlined the steps towards developing such a product operationally. If these 

forecasts are well received by users, they may become an official product, and 

experimental October or November water supply outlooks could follow.  

2) Develop climate literacy training within the NRCS. This training may or may 

not be modeled around similar training currently being developed within the 
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National Weather Service. It may also include issue briefing papers and training 

materials for NRCS State Water Specialists and users. Water Supply forecasters 

may also benefit from “gaming” simulations with regards to climate forecasts, 

similar to Baldwin (2001). This training could be developed jointly with 

university groups.  

3) Address issues of uncertainty and probabilistic versus deterministic water 

supply forecasts. This may include articulating the role of the water supply 

forecaster or State Water Specialist in the decision making process of the user. 

The NRCS should also review the social science literature or engage social 

scientists with regards to the effective communication of highly uncertain 

information.  

4) Appeal to the physical research community to determine the underlying 

causes for the decadal variability in streamflow and spring precipitation. 

Similarly, the performance of the NRCS as an agency should not be tied to the 

performance of its forecasts, unless the performance measure incorporates the 

effects of natural variability. The NRCS should be keenly interested in knowing if 

the variability in spring precipitation will keep rising as it means that the skill of 

the forecasts may continue to fall.  

5) Encourage the climate change community to further explore the implications 

of long term climate change on water supply forecasts. In particular, will 

snow-based streamflow forecasts remain relevant under a warmer climate? This 

question could be answered by forcing a Global Climate Model with observed 



 

261

20th century climate and regressing a model variable (e.g., snowpack) with 

observed and simulated streamflow. The model would then be run forward in time 

to a warmer climate and tests done to see if the relationship between, for example, 

model snowpack and simulated streamflow remain constant.  

6) Track methodological developments within the climate community. 

Researchers and operational climatologists are making excellent progress in the 

fields of ensemble dynamic simulation model forecasting. If and when the NRCS 

develops a simulation model, it could receive knowledge about bias adjustment 

and model combination techniques. It could also benefit from directly linking the 

outputs of the atmospheric models to hydrology models (e.g., Hay et al. 2002; 

Clark et al. 2003), or climate-weighting its ESP traces.  
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11. APPENDIX A: DERIVATION OF THE RELATIONSHIP BETWEEN THE 

COEFFICIENT OF VARIATION AND THE EXPECTED FREQUENCY OF 

ERROR WITHIN A PARTICULAR BOUND.  

 

Let o be a collection of observations. The coefficient of variation, CV is  

 

CV = (std(o)/ ō )  

 

where std(o) is the standard deviation of a collection of observations and ō is the mean of 

the observations. The standardized anomaly, Z is  

 

Z = (o–ō)/std(o) = (o–ō)/(cv * ō). 

 

Let perc be the percentage error being analyzed. Let 

 

oupper= (1+perc)*ō 

olower=(1-perc)*ō. 

 

Then, 

Zupper = ((1+perc)* ō – ō)/(cv * ō) = +perc/cv.  

Zlower = ((1-perc)* ō – ō)/(cv * ō) = -perc/cv.   
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The Cumulative Standard Normal Distribution is shown as NormalCDF(Z). 

NormalCDF(Zupper)-NormalCDF(Zlower) is the frequency that a climatology forecast 

would have an error between Zupper and Zlower. This also has the form,  

 

 NormalCDF(+perc/cv) – NormalCDF(-perc/cv) 

 

NormalCDF does not have a closed form, but in the example where cv = 1/3 and perc = 

0.1, the expected frequency is 0.236 or 23.6% of the time. 
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