

Idaho Water Supply Outlook Report February 1, 2004

"You gotta love it!" - The Rotary Snowplow Driver

Idaho Department of Transportation crews clearing Highway 21 north of Idaho City near Mores Creek Summit December 30, 2003 after nearly 30 inches of snow fell.

Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, or to subscribe to this publication

Contact - - Your local Natural Resources Conservation Service Office

or Natural Resources Conservation Service Snow Surveys 9173 West Barnes Drive, Suite C Boise, Idaho 83709-1574 (208) 378-5740

Internet Web Address http://www.id.nrcs.usda.gov/snow/

How forecasts are made

Most of the annual streamflow in the western United States originates as snowfall that has accumulated in the mountains during the winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Measurements of snow water equivalent at selected manual snow courses and automated SNOTEL sites, along with precipitation, antecedent streamflow, and indices of the El Niño / Southern Oscillation are used in computerized statistical and simulation models to prepare runoff forecasts. These forecasts are coordinated between hydrologists in the Natural Resources Conservation Service and the National Weather Service. Unless otherwise specified, all forecasts are for flows that would occur naturally without any upstream influences.

Forecasts of any kind, of course, are not perfect. Streamflow forecast uncertainty arises from three primary sources: (1) uncertain knowledge of future weather conditions, (2) uncertainty in the forecasting procedure, and (3) errors in the data. The forecast, therefore, must be interpreted not as a single value but rather as a range of values with specific probabilities of occurrence. The middle of the range is expressed by the 50% exceedance probability forecast, for which there is a 50% chance that the actual flow will be above, and a 50% chance that the actual flow will be below, this value. To describe the expected range around this 50% value, four other forecasts are provided, two smaller values (90% and 70% exceedance probability) and two larger values (30%, and 10% exceedance probability). For example, there is a 90% chance that the actual flow will be more than the 90% exceedance probability forecast. The others can be interpreted similarly.

The wider the spread among these values, the more uncertain the forecast. As the season progresses, forecasts become more accurate, primarily because a greater portion of the future weather conditions become known; this is reflected by a narrowing of the range around the 50% exceedance probability forecast. Users should take this uncertainty into consideration when making operational decisions by selecting forecasts corresponding to the level of risk they are willing to assume about the amount of water to be expected. If users anticipate receiving a lesser supply of water, or if they wish to increase their chances of having an adequate supply of water for their operations, they may want to base their decisions on the 90% or 70% exceedance probability forecasts, or something in between. On the other hand, if users are concerned about receiving too much water (for example, threat of flooding), they may want to base their decisions on the 30% or 10% exceedance probability forecasts, or something in between. Regardless of the forecast value users choose for operations, they should be prepared to deal with either more or less water. (Users should remember that even if the 90% exceedance probability forecast is used, there is still a 10% chance of receiving less than this amount.) By using the exceedance probability information, users can easily determine the chances of receiving more or less water.

The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, or marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at 202-720-2600 (voice and TDD).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, D.C., 20250-9410, or call (202) 720-5964 (voice and TDD). USDA is an equal employment opportunity provider and employer.

IDAHO WATER SUPPLY OUTLOOK REPORT

February 1, 2004

SUMMARY

The water spigot was either on or off during January. January started with a series of storms giving way to nearly two weeks of high pressure. Another round of storms at month's end allowed Idaho's snowpack to maintain their snowpack percentages from January 1 to February 1. January precipitation was 107% of average in northern Idaho, 80-90% across central and southern Idaho and only 73% in the Bear River basin. Snowpacks range from 95-110% of average for most basins. The lowest snowpacks are 90% of average in several basins and highest is 145% in the Owyhee basin. Reservoirs in central, southern and eastern Idaho remain low at 10-50% of capacity, while reservoir storage is more promising in the Boise and Payette reservoir systems at 75% and 94% of average, respectively. Streamflow forecasts call for 90-110% of average for most streams. However, users may wish to use a lesser forecast because of the accumulative drought effects and to reduce their chance of not having enough water. The highest forecasts are in the Owyhee basin at 120-140% of average and lowest is the Bear River at Stewart Dam at only 13% of average. If the current weather trends in the Bear River basin continue, the most severe water shortages since the 1930s are likely as Bear Lake is near empty at only 10% of capacity. Irrigation shortages are possible in the Salmon Falls, Oakley, Big Wood, Big Lost, Little Lost and parts of upper Snake especially if future conditions are drier than normal. Snowpacks and streamflow forecasts look encouraging and will provide some short-term relief from the drought, but long-term dryness will remain across southern Idaho until several wet years occur that get moisture back into the ground, springs, seeps, wetlands and aquifer, especially in the Bear River basin.

SNOWPACK

Snowpack percentages range from 95-110% of average for most basins in Idaho. The lowest snowpacks are 90% of average in the Bear, Little Lost, Birch, Big Wood above Hailey, Lemhi, and upper Salmon. The highest snowpacks are 135-145% of average in the Owyhee, Mores Creek and Willow basins. The snowpacks are 115-120% of average in the North Fork Payette, Henrys Fork, Portneuf, Salmon Falls and Bruneau basins. Snowpack percentages decreased 10-30 percentage points in some basins as a result of the below average precipitation and unusually high percentages from early January. The current snow is 60-75% of its seasonal peak for most basins. The highest is the Owyhee basin at 94% of its seasonal peak and has a few aerial markers that are 2-3 times their normal February 1 amounts. The snowpack in the Bear, Little Lost, Big Lost, Big Wood and Salmon is only 54-62% of its seasonal peak, much more snow is needed in these basins for the remaining winter months.

PRECIPITATION

January precipitation fell either at the beginning of the month or end of the month with nearly two weeks of high pressure and cold, foggy inversion weather in the middle of the month. In fact, sublimation or evaporation of snow water to the atmosphere was noticeable at several SNOTEL sites by observing a slight decrease in snow water content. This does not happen too often as winter storms usually keep adding moisture to the snowpack, but also shows how sensitive the snow pillow sensors are. A series of storms moved across the state at the end of the month with many Clearwater basin sites gaining 3-5 inches of snow water during the January 28-February 2 period. Most of the rest of the state gained 1-3 inches of moisture, however, the storms failed to bring much needed moisture to the Upper Snake and Bear River basins. January precipitation was the lowest in the state in the Bear River basin at only 73% of average followed by the Upper Snake at 83%. Elsewhere, January precipitation ranged from 86% of average in the Wood and Lost basins to 107% in northern Idaho. Water year to date precipitation is the lowest at 90% of average in the Wood, Lost, Salmon and Bear basins. The Clearwater basin hosts the highest water year to date precipitation at 105% of average.

RESERVOIRS

Reservoir storage remains low across central, southern and eastern Idaho. Owyhee Reservoir is 11% of average, 18% full and just waiting for the above average low snow to melt. Combined storage for Palisades and Jackson reservoirs is 41% of average, 28% full. American Falls Reservoir is about half full and the US Bureau of Reclamation does not project it to fill unless flood control releases are needed upstream. Bear Lake, Salmon Falls, Oakley and Magic reservoirs are about 10% full. Little Wood and Mackay reservoirs are 39% full. Blackfoot Reservoir remains nearly empty with a good low elevation snowpack making reading the gage difficult. The Boise Reservoir System is in better shape at 44% full, 75% of average. Cascade, Deadwood, Brownlee and Dworshak reservoirs look even better at 95% of average.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive and, in some cases, dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions in this report.

STREAMFLOW

Streamflow forecasts remain encouraging with most basins forecast in the 90-105% of average range, except for the Bear River at Stewart Dam which is now forecast at only 13% of average. However, water users may consider using a lesser exceedance forecast to reduce their risk of being water short. The water supply picture for basins on the western side of the state such as the Owyhee, Weiser, Payette and even the Boise is looking better in terms of snow, soil moisture and reservoir storage. However, because of the accumulative drought effects - dry soil, springs, low reservoir storage, lower snowpacks and lack of fall rains, agricultural water shortages could still occur with the most severe being in the Bear River basin. Future precipitation and timing of the snowmelt will determine if this year's snowpack puts a dent in the accumulative drought effects across central, southern and eastern Idaho. In the Bear River basin, several wet years may be needed to improve the snowmelt runoff efficiency in producing streamflow in the lower elevations of the drainage.

RECREATION

Near average precipitation in January keeps improving the winter recreation activities and the outlook for the summer boating season. Right now, the stage is set in the Owyhee basin: the reservoir is nearly empty at 11% of capacity, the snowpack is 145% of average, there is a good low elevation snowpack with some snow sites reporting 2-3 times their average February 1 snow water levels, and streamflow forecasts are for 142% of average for the Owyhee River near Rome and 112% for the reservoir inflow. Warm, wet weather could produce rapid melting and increases in streamflows or a gradual melt would produce a gradual increase in flow with more infiltrating into the ground. Stay tuned, but you might want to get your raft ready. The Bruneau River is looking more promising with a snowpack at 119% of average and stream forecast at average. The Boise and Payette basins are in good shape with above average midelevation snowpacks. Much more snow is needed in the higher elevations across the state to sustain streamflows into the summer months as Deadwood Summit SNOTEL site, in the heart of Idaho, is average and almost identical to the February 1 values for the past two seasons. The Middle Fork Salmon River forecast dropped to 86% of average. The Selway and Lochsa rivers are forecast at 96% of average.

OTHER INFORMATION

To have the first of month streamflow forecasts available more timely and closer to the first of each month, NRCS will post provisional streamflow forecasts on the first or second working day of the month under "Quick Glance Idaho Forecast Listing (current year)" on this web page: http://www.id.nrcs.usda.gov/snow/watersupply/

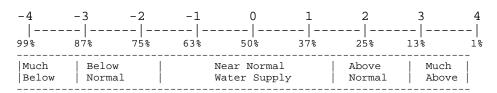
The link will be updated with the most current forecasts until they are finalized. The complete monthly Water Supply Outlook Report is also available on the above page.

In addition, NRCS is developing a Drought and Surface Water Supply Index web page at: http://www.id.nrcs.usda.gov/snow/watersupply/swsi-main.html

Numerous graphs will be available to keep users aware of current, historic and water supply trends in their basin of interest.

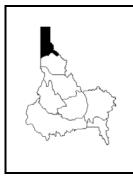
IDAHO SURFACE WATER SUPPLY INDEX (SWSI) As of February 1, 2004

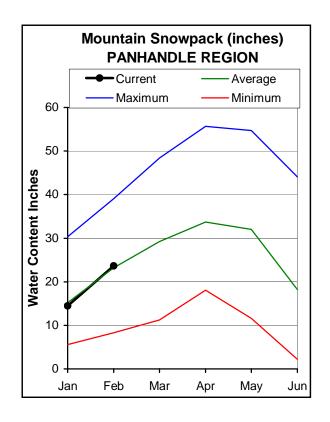
The Surface Water Supply Index (SWSI) is a predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.1 (abundant supply) to -4.1 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences.

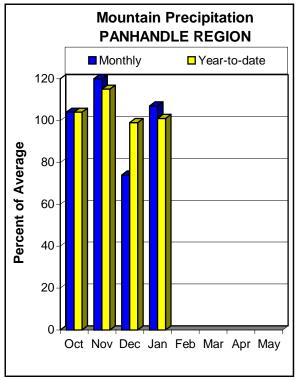

SWSI values are published January through May and provide a more comprehensive outlook of water availability than either streamflow forecasts or reservoir storage figures alone. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been established for most basins to indicate the potential for agricultural water shortages.

The following agencies and cooperators provide assistance in the preparation of the Surface Water Supply Index for Idaho:

US National Weather Service US Bureau of Reclamation Idaho Water Users Association US Army Corps of Engineers Idaho Dept. of Water Resources PacifiCorp


BASIN or REGION	SWSI Value	Most Recent Year With Similar SWSI Value	Agricultural Water Supply Shortage May Occur When SWSI is Less Than
PANHANDLE	-0.9	1993	NA
CLEARWATER	1.1	1989	NA
SALMON	-0.2	2003	NA
WEISER	0.5	2002	NA
PAYETTE	0.0	2003	NA
BOISE	0.2	1993	-2.1
BIG WOOD	-0.2	2000	-1.0
LITTLE WOOD	0.5	1996	-2.0
BIG LOST	0.0	1993	-0.5
LITTLE LOST	-0.5	1990	0.0
HENRYS FORK	1.5	1993	-3.3
SNAKE (HEISE)	-0.7	2000	-2.0
OAKLEY	-0.7	1995	-1.0
SALMON FALLS	-1.5	2000	-1.0
BRUNEAU	1.0	1996	NA
BEAR RIVER	-3.9	2003	-3.8


SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION



Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply," represents three SWSI units and would be expected to occur about one-third (36%) of the time.

PANHANDLE REGION FEBRUARY 1, 2004

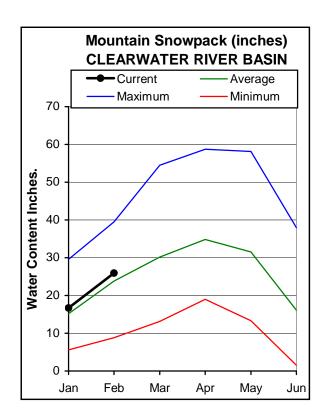
WATER SUPPLY OUTLOOK

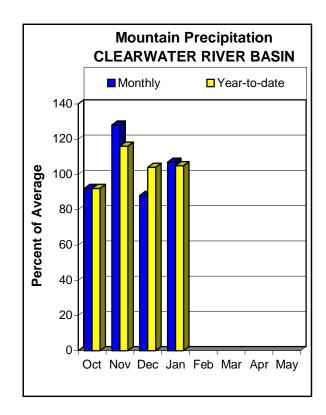
The Panhandle Region and Clearwater basin received the highest January precipitation in the state at 107% of average. Water year to date precipitation is average. The near average January precipitation kept snowpacks at nearly the same percentage as a month ago. Snowpacks range from 99% of average in the Kootenai basin to 111% in the Priest and Rathdrum basins. The Spokane basin snowpack is 107% of average and the Pend Oreille basin is 102%. The highest snowpacks are 125% of average in the low to mid-elevation areas and are approaching 90% of their seasonal peak water content that occurs in mid-March. These sites are in the 3,200-5,200 feet elevation band and include Sherwin, Moscow Mountain, Mica Creek, Mosquito Ridge and Humboldt Gulch SNOTEL sites. Higher elevation sites reach their seasonal maximum in early to mid-April. Overall, the Panhandle snowpack is about 70% of its seasonal peak. Streamflow forecasts remain similar to last month's and range from 95-110% of average. Water supplies should be adequate for the different water users and plentiful to fill the numerous lakes in northern

Idaho.

CLEARWATER RIVER BASIN FEBRUARY 1, 2004

PANHANDLE REGION
Streamflow Forecasts - February 1, 2004


			:=======	=======================================	=========			:========
		<<=====	Drier ====	== Future Co	nditions ==	===== Wette	c ====>>	
Forecast Point	Forecast	! =======	.=======	= Chance Of E	:xceeding * :	========	-======	
	Period	90%	70%	50% (Most	_	30%	10%	30-Yr Avq.
=======================================		(1000AF)	(1000AF)	, , , , ,	(% AVG.)	!	(1000AF)	(1000AF)
MOYIE RIVER at Eastport	APR-JUL	365	400	420	104	440	475	405
	APR-SEP	375	405	430	102	455 	485	420
SMITH CREEK	APR-JUL	94	109	120	98	131	146	123
	APR-SEP	96	113	125	97	137	154	129
BOUNDARY CREEK	APR-JUL	102	117	127	103	 137	152	123
	APR-SEP	108	123	133	103	143	158	129
CLARK FK at Whitehorse Rpds (1,2)	APR-JUL	7160	9530	10600	94	 11670	14040	11300
	APR-SEP	7820	10420	11600	93	12780	15380	12500
PEND OREILLE Lake Inflow (2)	APR-JUL	8850	10610	11800	93	 12990	14750	12700
	APR-SEP	9670	11590	12900	93	14210	16130	13900
PRIEST near Priest River (1,2)	APR-JUL	600	710	 760	93	 810	920	815
	APR-SEP	520	720	810	93	900	1105	870
COEUR D'ALENE at Enaville	APR-JUL	670	785	 860	116	 935	1050	740
	APR-SEP	710	825	905	116	985	1095	780
ST. JOE at Calder	APR-JUL	1025	1160	1250	110	 1340	1470	1140
	APR-SEP	1100	1240	1330	111	1420	1560	1200
SPOKANE near Post Falls (2)	APR-JUL	2250	2590	2830	111	 3070	3410	2550
	APR-SEP	2340	2700	2940	111	3180	3540	2650
SPOKANE at Long Lake (2)	APR-JUL	2460	2860	 3130	110	 3400	3800	2850
	APR-SEP	2670	3090	3370	110	3650	4070	3070
		=======	.=======	 =========	:=======			:=======
PANHANI	OLE REGION					PANHANDLE REC	GION	


Reservoir Storage (10	00 AF) - End	l of Janua	-	j	Watershed Snowpac	ck Analysis -	February :	1, 2004
Reservoir	Usable Capacity		able Stora Last		Watershed	Number of		r as % of
	 	Year	Year	Avg		Data Sites	Last Yr	Average
HUNGRY HORSE	3451.0	2551.0	2427.0	2214.7	Kootenai ab Bonners Fe		142	98
FLATHEAD LAKE	1791.0	955.6	1218.0	971.2	Moyie River	8	139	107
NOXON RAPIDS	335.0	129.1	329.5	310.9	Priest River	4	118	111
PEND OREILLE	1561.3	562.1	943.5	749.3	Pend Oreille River	70	140	102
COEUR D'ALENE	238.5	69.5	142.5	115.6	Rathdrum Creek	4	193	111
PRIEST LAKE	119.3	56.0	64.0	55.5	Hayden Lake	0	0	0
					Coeur d'Alene River	6	227	108
					St. Joe River	4	192	102
					Spokane River	12	214	107
					Palouse River	1	589	126

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

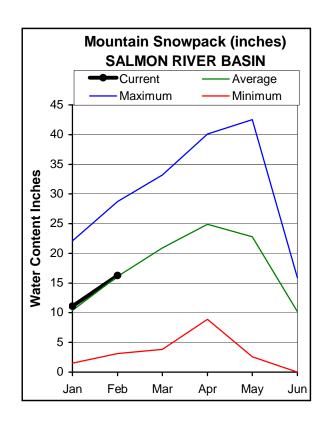
^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

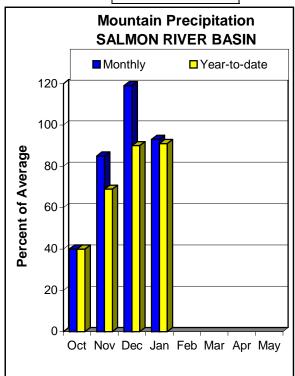
⁽²⁾ - The value is natural volume - actual volume may be affected by upstream water management.

WATER SUPPLY OUTLOOK

Precipitation in January was slightly above average at 107% and is 105% for the water year. As a result of the near average precipitation, snowpack percentages remained about the same as a month ago. The winter storms the last week of January increased snow water content amounts by 2-5 inches which equals 20-50 inches of new snowfall. The Selway River continues to have the highest snowpack in the basin at 112% of average. The snowpacks in the North Fork Clearwater and Lochsa basins are 107% of average. Overall, the Clearwater basin snowpack is 109% of average. Depth of snow at several SNOTEL sites in the Clearwater basin is over 100 inches deep and is 121 inches at Hemlock Butte SNOTEL site located at 5,810 feet and about 5 miles east of Pierce Ranger Station. Dworshak Reservoir is 61% of capacity, 98% of average. Streamflow forecasts range from 95-110% of average. With the current snowpack at 73% of its seasonal peak that occurs in early April, and streamflow forecasts in the 95-110% of average range, water supplies should be adequate this year.

CLEARWATER RIVER BASIN Streamflow Forecasts - February 1, 2004


		JCI CAMILIO		.scs - r		, 2001 				
						onditions ===		·>>		
Forecast Point	Forecast	 ======		C	hance Of I	Exceeding * ==				
Polecast Politic	Period	 90%	 70%			Probable)	30%	 10%	!	0-Yr Avq.
		(1000AF) (1000A	F)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
SELWAY near Lowell	APR-JUL	======== 1710	 1900	- 1	======== 2020	======= = 98	2140	2330	=====	2060
	APR-SEP	1800	2000		2130	98	2260	2460		2170
LOCHSA near Lowell	APR-JUL	1260	1390		1480	97	1570	1700		1530
	APR-SEP	1330	1470		1560	97	1650	1790		1610
DWORSHAK RESV INFLOW (1,2)	APR-JUL	1830	2610		2970	113	3330	4110		2640
	APR-SEP	2030	2810		3170	113	3530	4310		2800
CLEARWATER at Orofino (1)	APR-JUL	2990	4200		4750	102	5300	6510		4650
	APR-SEP	3250	4460		5010	102	5560	6770		4900
CLEARWATER at Spalding (1,2)	APR-JUL	5260	7310		8240	111	9170	11220		7430
	APR-SEP	5700	7750		8680	111	9610	11660		7850
CT EXDMATE	:====== R RIVER BASII	======= xī	=======	======	======== 		RWATER RIVE	======= D DACTNI	=====	=======
Reservoir Storage (10			ry			Watershed Sno			ruary	1, 2004
	Usable	*** Usal	====== ole Stora	====== .ge ***	======= 	=========	Numbe	======= er Th	===== is Yea	======= r as % of
Reservoir	Capacity	This Year	Last Year	Avq	Water	rshed	of Data Si		===== st Yr	====== Average
	 :======:	1ear =======	Tear	Avg	 = ======					=======
DWORSHAK	3468.0	2116.5	2366.2	2170.7	North	n Fork Clearwa	ater 9	16	3	108
					Lochs	sa River	3	12	8	106
					Selwa	ay River	4	14	0	112
					 Clear	rwater Basin 1	Total 17	16	0	109


^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

⁽¹⁾ - The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural volume - actual volume may be affected by upstream water management.

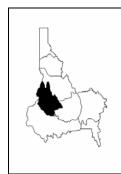
SALMON RIVER BASIN FEBRUARY 1, 2004

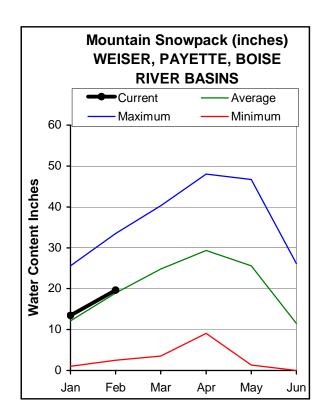
WATER SUPPLY OUTLOOK

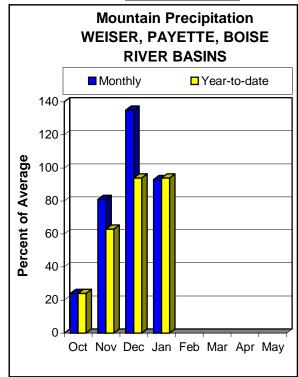
January precipitation was 93% of average for the basin as a whole. However some isolated sites received up to 125% while others in the Lemhi basin received only 60-70%. Water year to date precipitation is 91% of average. Snowpack percentages are similar to last month with the highest amounts in the Little Salmon basin at 113% of average and lowest amounts in the Lemhi and Salmon basin above Salmon at 90%. The snowpack in the South Fork Salmon is 104% and is 97% in the Middle Fork Salmon basin. Overall, the Salmon basin snowpack is 99% of average, down slightly from a month ago, but slightly better than a year ago. Streamflow forecasts mirror the snowpack with the lowest forecast in the Lemhi River at 73% of average. The Salmon River above Salmon and the Middle Fork Salmon River are forecast at 86% of average. The Salmon River at White Bird is forecast at near average. Streamflow runoff volumes and rafting conditions should be similar or even better than the past two years with average or better future precipitation.

SALMON RIVER BASIN Streamflow Forecasts - February 1, 2004

		 <<===== 	Drier ====	== Future Co	onditions =	===== Wetter	· ====>>	
Forecast Point	Forecast	! ======	=======	= Chance Of E	Exceeding *	========	======	
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
SALMON at Salmon (1)	APR-JUL	360	620	735	 86	850	1110	855
	APR-SEP	485	745	860	86	975	1240	1000
Lemhi River nr Lemhi	APR-JUL APR-SEP	35 43	50 62	 63 77	73 73	 77 94	100 121	86 105
MF Salmon at MF Lodge	APR-JUL APR-SEP	453 511	583 653	 680 760	86 87	 785 875	952 1059	790 875
SALMON at White Bird (1)	APR-JUL APR-SEP	3700 4320	5120 5740	 5760 6380 	99 99	 6400 7020	7820 8440	5850 6480
SALM Reservoir Storage	 	SALMON RIVER BASIN Watershed Snowpack Analysis - Februa						


	Reservoir Storage (1000 AF) - End	of Januar	У	İ	Watershed Snowpack Analysis - February			1, 2004
Reservoir	Usable Capacity 	*** Usab This Year	le Storag Last Year	e *** Avg	Watershed	Number of Data Sites	This Yea: ====== Last Yr	r as % of ====== Average
					Salmon River ab Salmon	9	102	89
					Lemhi River	6	109	90
					Middle Fork Salmon Rive	er 3	105	97
					South Fork Salmon River	3	103	104
					Little Salmon River	4	117	113
					Salmon Basin Total	24	107	99
				- 1				


^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


The average is computed for the 1971-2000 base period.

- (1) The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
- (2) The value is natural volume actual volume may be affected by upstream water management.

WEISER, PAYETTE, BOISE RIVER BASINS FEBRUARY 1, 2004

WATER SUPPLY OUTLOOK

January precipitation was 93% of average in these west-central mountains. The highest precipitation amounts fell in the McCall area with Bear Saddle SNOTEL site receiving 123% of its average January amount. The least amount fell along the South Fork Boise and Big Wood basin divide at 80% of average. The precipitation for the water year is 94% of average and ranges from 79% at Graham Guard Station to 116% at Prairie SNOTEL site. Mother Nature brought plenty of snow to the mid-elevation sites in the 4,500-6,000 foot zone from Idaho City to McCall. This elevation band received the most snow from both series of storms at the beginning and end of January. Several snow measuring stations such as Bear Basin, Tripod Summit, Deadman Gulch, Bad Bear, Bogus Basin, Mores Creek and Prairie are 125-175% of average. This is good news if you like to shovel snow, but it's the higher elevation snow that provides and sustains the streamflow into the summer months. Higher elevation SNOTEL sites such as Deadwood Summit, Jackson Peak and Trinity Mountain in the 7,000-8,000 foot zone only have a near normal snowpack. Dollarhide Summit SNOTEL at 8,420 feet along the South Fork Boise and Big Wood basin divide is only 86% of average, the same as last year. The North Fork Payette basin has the highest snowpack at 115% of average. The snowpack in the Payette basin is 112% of average and is 109% in the Weiser and Boise basins. The Payette and Boise reservoir systems are in good shape at 94% and 75% of average, respectively. Streamflow forecasts call for near average summer streamflows with the lowest amounts in the South Fork Boise River at 90% of average and highest projected runoff at 109% for Mores Creek. With the current snowpack at 68% of the April 1 seasonal peaks, the water supply outlook is looking encouraging in these basins even if future conditions are drier than normal.

		WEISER, P. Streamflo	w Forecas	ts - Fel	bruary 1,	, 2004				
						onditions ===				
Forecast Point	Forecast	======	=======	==== Ch	ance Of I	Exceeding * ==	=======		====	
	Period		70% (1000AF) [(1000AF)	Probable) (% AVG.)	30% (1000A)	F) (10	0% 00AF) 	30-Yr Avg. (1000AF)
WEISER near Weiser (1)	APR-SEP	200	350		420	100	490		640	420
SF PAYETTE at Lowman	APR-JUL APR-SEP	325 370	385 435	ļ	425 480	97 97	465 525		525 590	440 495
DEADWOOD RESERVOIR Inflow (1,2)	APR-JUL APR-SEP	93 101	120 128		132 140	99 99	144 152		171 179	134 142
LAKE FORK PAYETTE near McCall	APR-JUL APR-SEP	67 69	76 79		82 85	97 96	88 91	:	97 101	85 89
NF PAYETTE at Cascade (1,2)	APR-JUL APR-SEP	315 355	430 470		480 520	98 98	530 570		645 685	490 530
NF PAYETTE nr Banks (2)	APR-JUL APR-SEP	455 490	555 600	 	625 675	97 98	695 750		795 860	645 690
PAYETTE nr Horseshoe Bend (1,2)	APR-JUL APR-SEP	1090 1140	1410 1520	 	1560 1700	97 97	1710 1880		030 260	1610 1750
BOISE near Twin Springs (1)	APR-JUL APR-SEP	470 500	585 630		635 690	100 100	685 750		800 880	635 690
SF BOISE at Anderson Ranch Dam (1,2) APR-JUL APR-SEP	365 320	450 460		485 520	90 90	520 580		605 720	540 580
MORES CREEK near Arrowrock Dam	APR-JUL APR-SEP	102 106	126 131		143 148	109 108	160 165		184 190	131 137
BOISE near Boise (1,2)	APR-JUN APR-JUL APR-SEP	840 855 965	1080 1200 1310		1190 1350 1460	94 96 95	1300 1500 1610	1	540 840 950	1260 1410 1530
WEISER, PAYETTE, Reservoir Storage (100	BOISE RIVE 0 AF) - End	R BASINS of Januar	У			WEISER, PA Watershed Sno	AYETTE, BO Owpack Ana	ISE RIV lysis -	ER BASIN Februar	ry 1, 2004
Reservoir	Usable Capacity		======= le Storag Last Year		======= Wate: 		Nui	====== mber of Sites	This Y	ear as % of
MANN CREEK	======== 11.1	1.3	3.7	4.3	====== Mann	 Creek	=======	1	138	108
CASCADE	693.2	417.9	448.4	448.4	 Weise	er River		3	171	103
DEADWOOD	164.0	82.9	58.0	86.3	 North	n Fork Payette	е	8	122	115
ANDERSON RANCH	450.2	275.1	143.6	283.6	 South	n Fork Payette	Э	5	120	107
ARROWROCK	272.2	1.3	129.4	201.1	 Payet	tte Basin Tota	al :	13	120	112
LUCKY PEAK	293.2	169.3	117.3	106.6	Middl	le & North Fo	rk Boise	5	125	106

South Fork Boise River 9 118

4

15

Mores Creek

Canyon Creek

Boise Basin Total

101

137

110

115

226

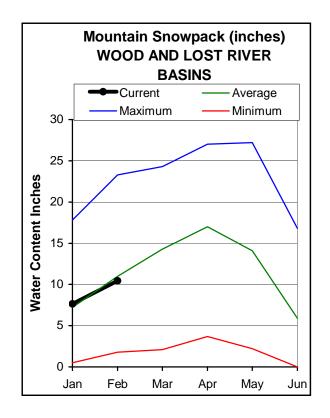
141

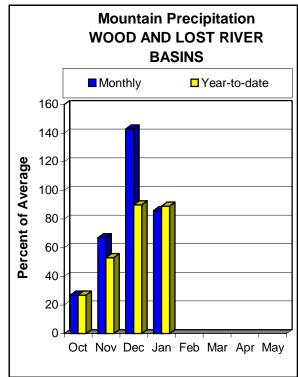
164

The average is computed for the 1971-2000 base period.

LAKE LOWELL (DEER FLAT)

165.2 118.9 60.3 101.7


______ * 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

WOOD and LOST RIVER BASINS FEBRUARY 1, 2004

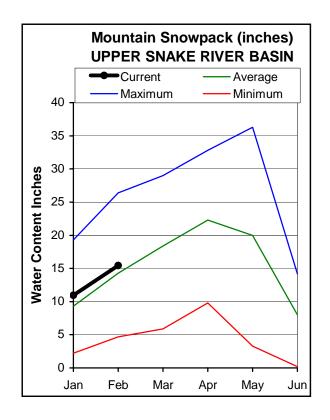
WATER SUPPLY OUTLOOK

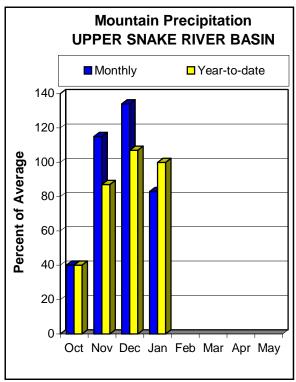
After three months with monthly precipitation that kept improving each month, January precipitation was below average at 86% of average. The greatest amounts fell in the headwaters of the Little Lost basin at 125% of average. The least amounts were 65-70% of average at Lost-Wood Divide, Galena and Galena Summit SNOTEL sites in the Big Wood basin. Water year to date precipitation is 89% of average. The below average precipitation decreased snowpack percentages 15-30 points from a month ago in the Camas, Big Wood, Little Wood and Big Lost basins. The greatest decrease was in Camas Creek, which is now 110% of average. The Big Wood basin above Hailey snowpack, which reflects more of the higher elevation snow zone, is only 91% of average. The Little Wood and Fish Creek basins snowpacks are 106% of average. The Big Lost basin snowpack is average and the same as last year. Little Lost, Birch and Medicine Lodge basins remain at 90% of average. Reservoir storage remains low with Magic Reservoir at only 24% of average, Mackay Reservoir at 63%, and Little Wood Reservoir at 72%. Streamflow forecasts decreased from last month and now range from 80-90% of average, except for the Little Lost River, which is forecast at 62% of average. A new forecast point was developed and is now being published by NRCS. This point is the Little Wood River above High Five Creek, which is forecast at 86% of average. This forecast point includes about 80% of the flow into the Little Wood Reservoir during the March-September period. Water supplies should be adequate in the Little Wood basin but could be marginal in the Big Wood, Big Lost and Little Lost basin, especially with below normal future precipitation.

WOOD AND LOST RIVER BASINS Streamflow Forecasts - February 1, 2004

			:=======	=======================================	==========		:=======	=========
		<<=====	Drier ====	== Future Co	onditions ==	===== Wetter	: ====>>	
Forecast Point	Forecast	 =======	:=======	= Chance Of F	:xceeding * =		 	
10100000 101110	Period	90%	70%	50% (Most	_	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
BIG WOOD at Hailey (1)	APR-JUL	======== 132	197	========= 230	90	========= 266	354	255
big wood at harrey (1)	APR-SEP	152	223	260	90	300	396	290
DIG MOOD Dell	*DD TI	7.0	110	152	01	100	256	100
BIG WOOD near Bellevue	APR-JUL APR-SEP	76 84	119 128	153 163	81 82	192 202	256 268	188 200
	APK-SEP	84	128	103	82	202 	208	200
CAMAS CREEK near Blaine	APR-JUL	42	65	83	83	104	138	100
	APR-SEP	42	65	84	83	105	140	101
BIG WOOD below Magic Dam (2)	APR-JUL	103	195	 260	90	325	415	290
	APR-SEP	113	210	275	90	340	435	305
LITTLE WOOD R ab High Five Ck	MAR-JUL	43	60	 73	86	 88	112	85
3	MAR-SEP	46	65	79	86	95	120	92
	APR-JUL	38	54	67	86	81	104	78
	APR-SEP	42	59	73	86	88	113	85
LITTLE WOOD near Carey (2)	MAR-JUL	48	68	 82	85	 96	116	96
,	MAR-SEP	52	74	89	86	104	126	104
	APR-JUL	41	61	75	86	89	109	87
	APR-SEP	44	66	81	86	96	118	94
BIG LOST at Howell Ranch	APR-JUN	86	109	 124	93	 139	162	134
DIC DOD! GO HOWOLI HOLDE	APR-JUL	102	137	161	94	185	220	172
	APR-SEP	119	158	185	94	210	250	197
BIG LOST below Mackay Reservoir (2)	APR-JUL	73	107	 130	92	153	188	142
210 2001 Delow Packar, Repervoir (2)	APR-SEP	97	134	159	92	186	221	173
LITTLE LOST blw Wet Creek	APR-JUL	18.2	23	 26	62	 29	34	42
TITITE TOST DIM MEC CLEEV	APR-SEP	22	28	32	65	36	42	49
				İ 	j	 		

Rese	WOOD AND LOST voir Storage (1000			У		WOOD AND LOST RIVER BASINS Watershed Snowpack Analysis - February 1,				
Reservoir		Usable Capacity	*** Usab This Year	le Storag Last Year	ge *** Avg	Watershed	Number of Data Sites		r as % of ====== Average	
MAGIC		191.5	20.5	18.6	85.0	Big Wood ab Hailey	8	94	91	
LITTLE WOOD		30.0	11.7	10.0	16.3	Camas Creek	5	131	110	
MACKAY		44.4	17.4	14.6	27.7	Big Wood Basin Total	13	104	97	
						Fish Creek	3	118	107	
						Little Wood River	8	102	106	
						Big Lost River	6	99	101	
						Little Lost River	3	114	90	
						Birch-Medicine Lodge Cr	ree 2	123	90	
						Camas-Beaver Creeks	4	155	112	


^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

⁽²⁾ - The value is natural volume - actual volume may be affected by upstream water management.

UPPER SNAKE RIVER BASIN FEBRUARY 1, 2004

WATER SUPPLY OUTLOOK

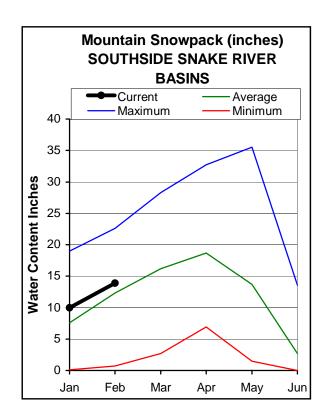
January precipitation was only 83% of average, the second lowest in the state, only the Bear River basin had less. Water year to date precipitation is average thus far. As a result of the below average precipitation, the snowpack in most basins dropped 10-20 percentage points from a month ago. The highest snowpacks are now 115-120% of average in the Henrys Fork, Snake River above Jackson Lake, Willow Creek and Portneuf drainages. The lowest snowpacks are in the Snake River tributaries of Gros Ventre, Hoback and Greys at 90% of average. When the above and below average snowpacks for the Snake River drainage above Palisades Reservoir are combined, the result is a snowpack at 101% of average. Similar, with combining the low elevation snowpacks of eastern Idaho puts the Snake River basin snowpack above American Falls Reservoir at 107% of average. The lower elevation snowpack in Willow, Blackfoot and Portneuf basins is the greatest since 1998. This is great news and will help get much needed moisture back in these basins; however, having the higher elevation snowpacks above average helps sustain streamflow in to the summer months. The current snowpack in Willow, Blackfoot, Portneuf and Henrys Fork basins is 75% of their seasonal snow water content peaks, while the Snake basin above Palisades Reservoir is only 65% of its seasonal peak. Reservoir storage remains low: the Bureau of Reclamation does not expect American Falls Reservoir to refill because of the low spring inflows, unless flood control releases are required upstream. Streamflow forecasts call for 85-105% of average runoff, however, because of the accumulative drought effects, users should consider using a lesser streamflow forecast. Remember last year when the April 1 snow peaked at 94% of average for the Snake above Heise and summer streamflow was 71%. Similar in 2002 when the snow peaked at 80% of average and streamflow was 65%. Water shortages in the Upper Snake could occur depending upon your water rights, especially with below average future precipitation, but surface water supplies should be better than the past three years, hopefully.

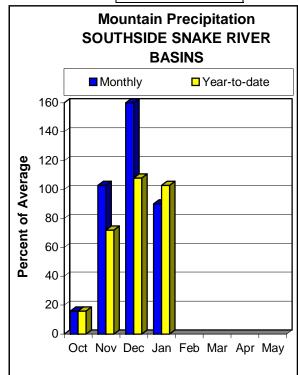
UPPER SNAKE RIVER BASIN
Streamflow Forecasts - February 1, 2004

Forecast Point	Forecast	<<=====	Drier ====	== Future Co	onditions ==	====== Wetter	====>>	
	Period	90% (1000AF)	70% (1000AF)	50% (Most (1000AF)	Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
HENRYS FORK near Ashton (2)	APR-JUL APR-SEP	490 675	545 735	580 780	102 102	615 825	670 885	570 765
HENRYS FORK near Rexburg (2)	APR-JUL APR-SEP	1360 1810	1530 1990	1640 2120	105 106	1750 2250	1920 2430	1560 2010
FALLS near Squirrel (1,2)	APR-JUL APR-SEP	300 365	355 425	380 450	99 99	405 475	460 535	385 455
TETON near Driggs	APR-JUL APR-SEP	132 171	161 206	 180 230	109 110	199 255	229 290	165 210
TETON near St. Anthony	APR-JUL APR-SEP	320 390	380 460	 420 505	104 105	460 550	520 620	405 480
SNAKE near Moran (1,2)	APR-SEP	735	865	 925	102	985	1115	905
PACIFIC CREEK at Moran	APR-SEP	136	156	 170	96 1	184	204	178
SNAKE above Palisades (2)	APR-JUL APR-SEP	1940 2240	2170 2500	2320 2680	98 98	2470 2860	2700 3120	2370 2730
GREYS above Palisades	APR-JUL APR-SEP	215 255	265 305	 295 340	87 86	325 375	375 425	340 395
SALT near Etna	APR-JUL APR-SEP	190 235	245 305	 285 350	84 83	325 395	380 465	340 420
PALISADES RESERVOIR INFLOW (1,2)	APR-JUL APR-SEP	2410 2830	2940 3430	 3180 3700	96 96	3420 3970	3950 4570	3330 3870
SNAKE near Heise (2)	APR-JUL APR-SEP	2730 3210	3120 3660	 3390 3960	95 95	3660 4260	4050 4710	3560 4160
WILLOW CREEK nr Ririe	MAR-JUL	51	68	 81	92	95	119	88
BLACKFOOT RESV INFLOW	APR-JUN	60	88	108	90	128	156	120
SNAKE nr Blackfoot (1,2)	APR-JUL APR-SEP	3790 4940	4480 5630	 4800 5950	100 100	5120 6270	5810 6960	4790 5940
PORTNEUF at Topaz	MAR-JUL MAR-SEP	64 80	75 92	 82 101	92 93	89 110	100 122	89 109
AMERICAN FALLS RESV INFLOW (1,2)	APR-JUL APR-SEP	1870 2140	2830 3100	 3260 3530	101 101	3690 3960	4650 4920	3240 3510

UPPER SNAKE RIVER BASIN Reservoir Storage (1000 AF) - End of January UPPER SNAKE RIVER BASIN Watershed Snowpack Analysis - February 1, 2004

Reservoir	Usable Capacity	!		age *** 	Watershed	Number of		r as % of
		Year	Year	Avg	Da	ta Sites	Last Yr	Average
HENRYS LAKE	90.4	67.8	67.8	83.2	Henrys Fork-Falls River	10	148	119
ISLAND PARK	135.2	75.9	71.5	102.2	Teton River	8	138	111
GRASSY LAKE	15.2	9.7	12.5	11.8	Henrys Fork above Rexburg	ı 18	144	116
JACKSON LAKE	847.0	160.5	261.8	490.1	Snake above Jackson Lake	9	132	113
PALISADES	1400.0	459.7	500.9	1040.3	Gros Ventre River	3	112	88
RIRIE	80.5	28.7	33.1	35.8	Hoback River	5	122	92
BLACKFOOT		NO REPO	RT		Greys River	5	120	92
AMERICAN FALLS	1672.6	804.5	921.2	1125.4	Salt River	5	120	97
					Snake above Palisades	29	123	101
					Willow Creek	7	174	134
				ĺ	Blackfoot River	3	147	110
				į	Portneuf River	6	207	116
				į	Snake abv American Falls	48	139	109


^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table. The average is computed for the 1971-2000 base period.


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

SOUTHSIDE SNAKE RIVER BASINS FEBRUARY 1, 2004

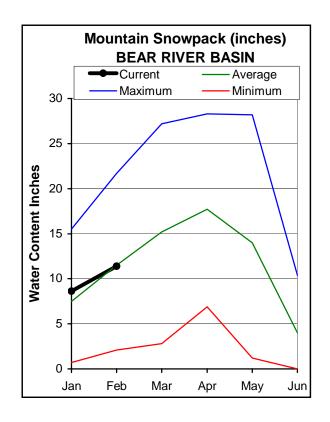
WATER SUPPLY OUTLOOK

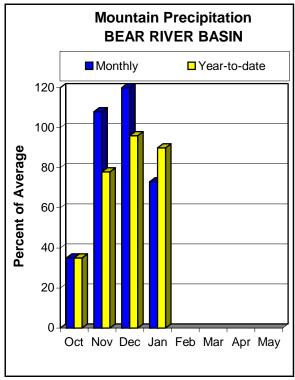
Precipitation in January was 90% of average and is average for the water year. As a result of the below average precipitation and high snowpack percentages in early January, snowpack percentages decreased 10-15 percentage points from a month ago. The Owyhee basin continues to host the highest snowpack in the state at 145% of average and is in the best shape at 94% of its seasonal peak that occurs around March 22. The stage is set in the Owyhee basin: the reservoir is nearly empty at 11% of capacity, 18% of average, there is a good low elevation snowpack with some snow sites reporting 2-3 times their normal February 1 snow water levels, and the streamflow forecasts call for 112-142% of average. Warm, wet weather could produce rapid melting and increases in streamflows or a gradual melt would produce a gradual increase. Stay tuned, but you might want to get your raft ready.2The Bruneau basin snowpack is 119% of average, Salmon Falls is 115%, and Oakley basin is 107%. These basins are 75% of their seasonal peaks. This is great news, but higher elevation snowpacks above 8,000 feet are only about 110% of average and 68% of their seasonal peaks. It is the higher elevation snow that sustains the streams in the summer months. Oakley Reservoir inflow and Salmon Falls Creek are forecast at 94% of average while the Bruneau River is forecast at 108%. Water shortages are still expected in Salmon Falls and Oakley basins, but hopefully supplies will be better than the past three seasons.

SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - February 1, 2004

=======================================								
		<<=====	Drier ====	== Future Co	nditions =	===== Wette	r ====>>	
Forecast Point	Forecast	======	.=======	= Chance Of E	xceeding * :		 	
	Period	90%	70%	!	Probable)	!	10%	30-Yr Avg.
		1	(1000AF)		(% AVG.)	(1000AF) =======		(1000AF)
OAKLEY RESV INFLOW	MAR-JUL	19.8	27	32	94	38	 47	34
	MAR-SEP	22	29	35	95	41	51	37
OAKLEY RESV STORAGE	FEB-28	28	29	30	96	 31	32	31
	MAR-31	30	32	34	94	36	38	36
	APR-30	33	37	39	95	41	45	41
SALMON FALLS CREEK nr San Jacinto	MAR-JUN	57	73	 84	94	 95	111	89
	MAR-JUL	56	73	85	91	97	114	93
	MAR-SEP	59	76	88	90	100	117	98
SALMON FALLS RESV STORAGE	FEB-28	55	58	 60	100	 62	65	60
	MAR-31	62	69	73	104	77	84	70
	APR-30	75	83	88	99	93	101	89
BRUNEAU near Hot Spring	MAR-JUL	160	206	 240	102	 277	336	235
	MAR-SEP	171	219	255	102	294	355	250
OWYHEE near Gold Creek (2)	MAR-JUL	37	37	 38	119	 39	40	32
OWYHEE nr Owyhee (2)	APR-JUL	51	78	 96	117	 114	141	82
OWYHEE near Rome	FEB-JUL	601	788	 930	142	 1083	1330	655
OWYHEE RESV INFLOW (2)	FEB-JUL	483	654	 785	112	 928	1160	700
	FEB-SEP	513	687	820	112	965	1199	730
	APR-SEP	214	320	405	94	500	657	430
SUCCOR CK nr Jordan Valley	FEB-JUL	13.1	20	 25	130	30	37	19.3
SNAKE RIVER at King Hill (1,2)	APR-JUL	707	1521	 1890	62	 2260	3070	3050
SNAKE RIVER near Murphy (1,2)	APR-JUL	845	1701	 2090	68	 2480	3340	3090
SNAKE RIVER at Weiser (1,2)	APR-JUL	1134	3091	 3980	69	 4870	6830	5760
SNAKE RIVER at Hells Canyon Dam (1,2	APR-JUL	1570	3667	 4620	71	 5575	7670	6490
SNAKE blw Lower Granite Dam (1,2)	APR-JUL	11485	17891	 20800 	96	 23710 	30110	21600
		=======	:=======	, =========	:======::	, ==========		.========

SOUTHSIDE S Reservoir Storage (1	SOUTHSIDE SNAKE RIVER BASINS Watershed Snowpack Analysis - February 1, 2004							
Reservoir	Usable Capacity 	*** Usa This Year	able Stora Last Year	age *** Avg	Watershed	Number of Data Sites	This Yea: ====== Last Yr	r as % of ====== Average
OAKLEY	74.5	8.7	13.4	28.2	Raft River	2	198	111
SALMON FALLS	182.6	14.1	13.8	55.7	Goose-Trapper Creeks	3	207	107
WILDHORSE RESERVOIR	71.5	14.0	19.8	38.9	Salmon Falls Creek	7	200	115
OWYHEE	715.0	77.6	140.9	438.3	Bruneau River	8	189	119
BROWNLEE	1419.3	1129.6	1394.4	1176.3	Owyhee Basin Total	20	262	145


^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.


^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

⁽²⁾ - The value is natural volume - actual volume may be affected by upstream water management.

BEAR RIVER BASIN FEBRUARY 1, 2004

WATER SUPPLY OUTLOOK

After receiving 120% of average precipitation in December, January precipitation took a turn for the worst and was only 73% of average, the lowest in the state. Water year to date precipitation decreased to 90% of average. Snowpack percentages decreased 15-25 percentages points from last month and are now about 90% of average in the Bear River and its tributaries, except for Oxford Springs SNOTEL site near Malad at 137% of average. The snowpack is better than the 62% of average measured a year ago, but much more snow is needed to fill the drought deficit from the past four years. Bear Lake is nearly empty in terms of usable storage at 10% of capacity, 16% of average. Streamflow forecasts deceased from a month ago to even lower runoff volumes. Forecasts remain the highest in the headwaters tributaries with Smiths Fork in Wyoming forecast at 78% of average and Bear River near UT-WY State Line forecast at 75%. Streamflow forecasts decrease downstream and call for 46% of average for the Bear River near Woodruff and for only 13% of average for the Bear River at Stewart Dam. This decreasing streamflow volume relationship is similar to last year's observed runoff and is a result of the accumulative drought effects -- dry soils, springs and wetland areas. The Bear River at Stewart Dam observed flow the past three years was less than 10% of average and was only 21% in 2000. Water users should be prepared and planning for water shortages as water may run out by mid-July. Conditions can improve with two more months of winter still to come, but in the Bear River basin usually several wet years are needed to saturate the soils and improve the snowmelt runoff efficiency.

BEAR RIVER BASIN Streamflow Forecasts - February 1, 2004

			=======	======	=======	, 2001 =======					
Forecast Point	======== Cha			ance Of Exceeding * =======				=====			
	Period	90%	70%			Probable)	30		10%	30-Yr Avg.	
		(1000AF)	(1000AF	·	(1000AF)	(% AVG.)	(100	, ,	1000AF)	(1000AF)	
Bear River nr UT-WY State Line	APR-SEP	55	78		94	75		110	133	125	
Bear River ab Reservoir nr Woodruff	APR-SEP	9.0	42		65	46	 	88	121	142	
Smiths Fork nr Border	APR-JUL	50	68	- 1	80	78	 	92	110	103	
	APR-SEP	59	79	j	93	77	j 1	107	127	121	
			4.5.0	ļ				4-	=-	007	
Bear River at Stewart Dam	APR-JUL APR-SEP	9.0 10.0	16.0 19.0		29 33	13 13	 	45 51	76 85	227 255	
	ALK DEL	10.0	10.0	i	33	13		31	03	233	
	======================================	-======	======	======	======== 			======	.=======: >T	========	
BEAR RIVER BASIN Reservoir Storage (1000 AF) - End of January					BEAR RIVER BASIN Watershed Snowpack Analysis - February 1, 2004						
	Usable	*** Usable Storage ***				=======		 Number		This Year as % of	
Reservoir	Capacity	This	Last		Water	rshed		of		=======	
		Year	Year	Avg				ata Site		r Average	
BEAR LAKE	1421.0	140.8	358.2	906.1		ns & Thomas		4	129	89	
MONTPELIER CREEK	4.0	0.9		1.7	Bear	River ab WY	-ID line	11	140	86	
					Montg	pelier Creek		1	138	95	
					Mink	Creek		1	173	101	
					Cub F	River		1	168	89	
					 Bear	River ab ID	-UT line	17	149	91	
					Malad	d River		1	243	137	

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

Interpreting Streamflow Forecasts

Introduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflovy forecasts are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations, There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast; it means that they need to evaluate existing circumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value.

There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent

chance that the streamflow volume will exceed this forecast value.

There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having

too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be less than this forecast value. 10 Percent Chance of Exceeding Forecast. there is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be less than this forecast value.

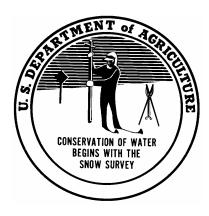
Using the forecasts - an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River near Death between March I and July 31.

Using the Higher Exceedence Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they determine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that five out of every ten years with similar conditions would produce streamflow volumes greater than 36,000 acre-feet was more than they would like to risk, they might plan on receiving 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three Out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.


In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts

		<<=====	Drier ====	== Future Co	onditions =	===== Wetter	====>>	
Forecast Point	Forecast	======================================						
	Period	90%	70%	50% (Most	Probable)	30%	10%	30-Yr Avg.
		(1000AF)	(1000AF)	(1000AF)	(% AVG.)	(1000AF)	(1000AF)	(1000AF)
=======================================			=======				=======	========
SF PAYETTE RIVER at Lowman	APR-JUL	329	414	471	109	528	613	432
	APR-SEP	369	459	521	107	583	673	488
BOISE RIVER near Twin Springs (1)	APR-JUL	443	610	685	109	760	927	631
	APR-SEP	495	670	750	109	830	1005	

For more information concerning streamflow forecasting ask your local NRCS field office for a copy of "A Field Office Guide for Interpreting Streamflow Forecasts" or visit our Web page.

OFFICIAL BUSINESS

Issued by
Bruce I. Knight, Chief
Natural Resources Conservation Service
Washington, DC

Released by Richard Sims, State Conservationist Natural Resources Conservation Service Boise, Idaho

Prepared by
Snow Survey Staff
Ron Abramovich, Water Supply Specialist
Philip Morrisey, Hydrologist
Kelly Vick, Data Analyst
Bill Patterson, Electronics Technician
Jeff Graham, Electronics Technician

Cooperative funding for printing provided by Idaho Department of Water Resources

Numerous other agencies provide funding and/or cooperative support. Their cooperation is greatly appreciated.

