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CHAPTER! 

SOIL WATER STATICS 

1.1. The Soil System 

The soil system is composed of primarily three components, solids, air and water. In most cases 

the solids, which include both organic and inorganic particles, make up between 35 and 75 
percent of the total volume. The remainder of the volume is void space which may be filled with 

air or water. Solids, air and water are necessary for optimum plant growth and the proportion 

of each component at a given time is dependent on soil, climatic, and man influenced factors. 

Near the surface a substantial part of the soil volume may be occupied by living materials in the 

form of plant roots, worms, bacteria, etc. The proportion and activity of these elements is 

obviously dependent on the soil, crop or cover, time of year and other factors and it_ is usually 

ignored in analysis of soil water movement. However, biological activity may have a profound 

influence on the state and movement of water in surfacial soils. 

The solid fraction of soils may be broken into an inorganic or mineral fraction and an organic 

fraction. Although thousands of hectares of organic soils are under cultivation, most agricultural 

soils are classified as inorganic. Inorganic soils still contain some organic matter in the form of 

humus. Micro-organisms (e.g .  bacteria, fungi, protozoa), macro-organisms (e.g. worms, insects) 

and plant roots are other sources of organic matter. The organic matter content of most soils is 

in the range of 2 to 5 percent by weight. Arid and very sandy soils may have organic matter 

contents of less than one percent, which is considered low. Soils having organic matter contents 

of greater than 30 percent to depths greater than 40 em are classified as organic soils .  

Texture 

The mineral fraction of soil is classified according to size of single soil particles. The size 

distribution is referred to as 11texture11 with the primary textural fractions being sand, silt and clay. 

A commonly accepted classification scheme was developed by the Soil Survey staff, U.S .  

Department of Agriculture ( 1 951) and is  given in Table 1.1. 
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Table 1.1. Classification according to particle size. 

Texture Size range 
Clay 0 - 2 ll (microns, 1o-6m) 
Silt 2

·
- 50 ll 

Very fine sand 50 - 100 ll 
Fine sand 100 - 200 ll 
Medium sand 200 - 500 ll 
Coarse sand 0.5 - 1 mm 
Very coarse sand 1 - 2 mm 
*Fine gravel 6 - 1 9  mm 
·Coarse gravel 1 9  - 7 6 mm 
*Small cobbles 76 - 152 mm 
"Large cobbles 1 52 - 305 mm 
:Boulders >3 05 mm 
*Particles larger than 2 mm are not classified as soils. The classifications given are the ASTM 
D 2488 classifications after Bouwer ( 1 978). 

PERCENT SAND 

Figure 1.1. Soil textural chart showing the percentages of sand, silt and clay for the 

various textural classes. (From Soil Survey Staff, 1951.) 
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The particle size distribution may be plotted as shown in Figure 1.2. The percentage by 

weight of a given particle size is determined by a mechanical analysis and plotted on semi-log 

paper. The "percent smaller than a given size" is the percentage that would pass through a sieve 

with openings of that size. Soils with most of the particles within a small size range are said to 

be "poorly graded" (e.g. the uniform sand in Figure 1.2). Conversely, "well graded" soils have 

a more gradual distribution curve (Figure 1 .2). 
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Figure 1.2. Particle size distribution for a uniform sand and a well graded soil. 

Agricultural soils are commonly classified and referred to by such terms as sandy loam, 

silt loam, sandy clay, etc. These textural designations are determined on the basis of the mass 

percentages of sand, silt and clay sized particles (Figure 1.2). For example, a soil with 30% 
sand, 35% silt and 35% clay sized particles would be classified as a clay loam. 

Porosity and Void Ratio 

The total unit volume of soil or rock V1 may be divided into the volume of solids V5 and the 

volun1e of voids Vv; i.e. V1 = Vs + Vv. The porosity n is defined as 

n = V/Vt ( 1 .1) 

The porosity of mineral soils varies between about 25% for compacted soils to 70% for loose 

topsoils. The porosity also depends on the size and shape of the primary particles. Approximate 

porosity ranges for soils and other geologic materials are given in Table 1 .2 .  They are based on 
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data summarized by Davis ( 1969) as modified by Bouwer ( 1978) and Freeze and Cherry ( 1979). 

The volume ofvoids may be written as Vv =Va + Vw where V8 =volume of air and Vw =volume 

of water. 

The void ratio e is defined as the ratio of the volume of voids to the volume of solids, 

e=V/V. 

Table 1.2. Approximate ranges of porosity values of unconsolidated materials. 

Material 
Clay 
Silt 
Fine sand 
Medium sand 
Coarse sand 
Gravel 
Sand and gravel mixes 
Limestone 
Sandstone 
Shale 
Crystalline rock 

Porosity (%) 
40 - 70 
35 - 50 
40 - 50 
3 5 - 40 
25 - 40 
20 - 40 
1 0 - 30 
0 - 50 
5 - 30 
0 - 1 0 
0 - 1 0  

(1.2) 

The void ratio is commonly used in soil mechanics, in applications where the soil is compacted, 

etc. Note that, for a given soil mass, the denominator remains constant when the soil volume is 

changed. The value of e varies from about 0. 7 for dense sands to greater than 1 . 5  for well 

structured clays. 

Particle Density and Bulk Density 

The particle density Ps is the mass per unit volume of the soil solids, 

Ps=M/Vs ( 1 .3) 

where Ms is the mass of the solids. For most mineral soils Psis between 2.6 and 2.7 gm/cm3• 

The presence of organic matter lowers the mean value of Ps· The density of the soil solids is 

often expressed in terms of the specific gravity which is the ratio of the particle density to the 

density of water. Since the density of water is unity in the metric system, the specific gravity 

has the same numerical value as Ps although the dimensions are unitless. 
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The bulk density or dry bulk density is the ratio of the mass of the dry soil to its volume, 

Pb = MsNt (1.4) 

where the volume V1 is generally the wet volume, or the volume determined before drying. Of 

course Pb can be calculated from Ps and n or Ps and e-as, 

Pb = (1-n) Ps ( 1 . 5) 

( 1 .6) 

Water Content 

The water content is often called moisture content in soil and water engineering. Since the 

wetting phase of the system is almost always water rather than some other liquid, the term water 

content is more appropriate and will be used herein. The water content may be defined on a 

volume basis, a dry weight basis or a wet w�ight basis. 

The volume based or volumetric water content e is the ratio of the volume of water to the total 

soil volume 

O = VJV1 ( 1 .7) 

It has units of cm3/cm3 and is usually expressed as a decimal fraction or a percentage. The 

soil is considered to be a fixed matrix with a constant V 1 in most water management applications, 

and the volumetric water content is preferred over the other definitions. 

The dry weight or dry mass based water content, m, is defined as, 

( 1 . 8) 

where Mw is the mass of water in the sample and M5 is the mass of the solids. This term is often 

called the gravimetric water content and is also unitless . It is commonly used in soil mechanics. 

The wet weight weight based water content, M, is less frequently used and is defined as 

(1.10) 
This parameter is frequently used in characterizing the moisture content of grains and other 

agricultural products, but isn't used very much in soil physics or soil and water engineering. 

Basic definitions relative to soil and water conditions are summarized in Table 1.3. 
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Table 1.3. Basic definitions relative to soil and soil-water conditions. 

Parameter 

Total Porosity 

Void Ratio 

Bulk Density or 
Dry Bulk Density 

Particle Density 

Volumetric 
Water Content 

Water Content, 
Dry Weight Basis 

Water Content M 
We.t Weight Basis 

Symbol 

n 

e 

Pb 

• Ps 

e 

m 

Definition 
Volume ofPores = Vv = V.. + Vw 
Total Volume V V 

Volume of Pores = Vv = V.. + V w 
Volume of Solids V s V s 

Mass of Dry Soil = Ms (g/cm3) 
Total Volume V 

Mass of Dry Solids = Ms 
Volume of Dry Solids V s 

Volume of Water = V w = 2w_ (cm3/cm3) 
Total Volume V V w 
Mass Water = Mw 
Mass Solids M5 

Mass Water = Mw_ 
Total Mass Ms + Mw 

"For mineral soils, Psis usually between 2.6 to 2.7 gm/cm3• In the absence of more accurate 
information a value of 2.65 is commonly assumed. 

1.2. Soil Water Under Static Conditions 

In order to understand the movement and storage of water in soils it is necessary to 

examine soil water relationships under static conditions. First consider a column of soil 

which is completely saturated with a thin film of water ponded on the surface. Water in the 

voids is continuous and, assuming the soil matrix is fixed, the pressure distribution is the 

same as it would be for a water column of the same height. Consideration of the sum of 

forces acting on an elemental volume of water in the vertical direction shows that 

dp/dz =- pg (1.11) 

where p is pressure, p the density of water, g the accele�ation due to gravity, and z the 

vertical position coordinate defined as positive in the upward direction. By integration, 

p/pg+z=H ( 1 . 1 2) 

where His a constant. In most soil water or groundwater applications, p is expressed as gage 
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rather than absolute pressure . So p refers to the soil water pressure in excess of the 

atmospheric pressure, Po· The quantity p/pg is defined as the pressure head, h, with units 

of length, i .e .. ·h = p/pg . Likewise, z, the distance above the datum plane, is the position head 

and the sum of the position and pressure heads is the hydraulic head, H. 

H = h+z ( 1 . 13) 

For static conditions the hydraulic head H is constant, and the distributions of pressure, 

position and hydraulic heads are shown in Figure 1 .3 . 

. The pressure head at a given point may be defined as the vertical distance that water will 

rise in an open tube. with its end inserted at that point (Figure 1 .4). Such a tube is cal led a 
piezometer. The position head z is simply the distance of the point above the datum 

� 
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H, h, Z 

Figure 1.3. Distribution of soil water pressure head, position head and hydraulic 
head for a vertical column of saturated soil.  
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PIEZOMETER 

- p - h=-
� _i pg 

r· H=h+Z 

1·. . ··1· 
____ .... ______ __.... _______ DATUM, Z = 0 

Figure 1.4. Pressure head, position head and hydraulic head as determined by a 
piezometer at point A. 

Now consider the column of Figure 1 .5  at equilibrium with the water table or the free 

water surface at z = t Pores above the water table may contain both air and water with the 

water phase still connected via films around and between the solid particles. The soil water 

system in this condition is called unsaturated. We will see later that the pores may still be 

filled with water (saturated) some distance above the water table. Again, if the soil water is 

static, the total hydraulic head is constant and equal to the distance of the free surface above 

the datum. 

H = p/pg+z = � 

Then for z > e the soil water pressure is negative as shown in Figure 1.5. 
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Figur e 1.5. Soi l water pressure, position, and hydraulic heads for a vertical column 
with a water table a distance @ from the bottom. 

The forces active in the soil and liquid phases of an unsaturated porous materials are 

molecular in nature. They may be divided.into adhesive forces, those forces acting between 

unlike molecules, and cohesive forces, those forces acting between like molecules. These 

forces have been discussed in detail by others (e.g., Day et al., 1967; Childs, 1969; Kirkham 

and Powers, 1972) and the reader is referred to these works for an in depth treatment of this 

subject. 

When the soil water pressure is less than atmospheric h=p/pg is commonly referred to as 

suction head or tension head in which it maintains a positive sign; i.e. h=p/pg=-25 em would 

be a suction or tension head of+ 25 em. It has also been called capillary head because of the 

role of capillary forces in the soil water system. The term matric potential now seems to be 

preferred when the pressure is negative because it denotes the total of the forces holding the 

water in the soil matrix. Thus h would be termed the matric head for unsaturated conditions. 

The term h = p/pg will be referred to herein as pressure head for both positive and negative 

pressures. It is simply the potential energy per unit weight that the soil water has by virtue 

of its pressure. It also may be expressed as the height of a column of water which is in 

equilibrium with the soil at the point in question. The potential energy of the soil water due 

to pressure, position or other factors such as solutes may also be expressed in terms of energy 

per unit mass or energy per unit volume as discussed by Hillel ( 1 97 1  ). 

Negative pressure heads may be measured by using a tensiometer rather than a 

= £44 
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piezometer. A tensiometer is shown schematically by the upper tube in Figure 1 .5. A porous 

membrane, usually a ceramic bulb or cup, is used to connect the water in the tube with the 

soil water. The porous membrane is permeable to water but not to air, so long as rated 

pressure head limitations are not exceeded. Therefore the pressure head in the cup reaches 

equilibrium with that in the soil water and is indicated by the distance ht> in Figure 1.5 .  Note 

that the pressure head is still the height of a column of water in equilibrium with the soil 

water, but that the vertical distance of the water column above the point is negative. In 

application tensiometers usually consist of a closed water filled tube with a ceramic cup at 

the end (Figure 1.6). The soil water pressure head is
. 
measured by a vacuum gage or a mana-

meter. 

-TENSIOMETER · 

VACUUM GAGE 

POROUS CUP 

Figure 1.6. Tensiometer for measuring soil water pressure heads. Both positive and 

negative pressures may be determined. 

To gain a better understanding of the relationship between soil water pressure and the 

distribution of soil water, it is useful to consider a capillary tube analogy. A capillary tube 

of radius, r is inserted into a container of water open to the atmosphere (Figure 1.7). The 

water will rise in the tube a distance he. Considering a free body diagram of the water in the 

tube the upward forces are due to the surface tension T = 2nrcr, where cr is the coefficient of 

surface tension. At equilibrium the upward force balances the downward force due to the 

weight, W, of the water: 
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TCos O = W 

2crcosE> h = --­
c pgr 

Figure 1.7. Water in a capillary tube. 

(1. 14) 

2 W= 11 r hcP9 

The pressure in the water at point 0 just under the surface film may be obtained by either a 

free body diagram of the film or by noting that the water is at rest so that: 

p/pg + z = H = constant. 

At z = 0, p = 0 So p/pg + z = 0 and p/pg = -z. 

Therefore at z =he, p/pg =-he=- 2crcos8. 
pgr 

-2ocosE> 
p= r 
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Note that the quantities cr and p are properties of the liquid while r is a property of the 

medium (tube) and e is dependent on both the liquid and the medium. Likewise unsaturated 

soil contains both water and air and the soil water pressure is dependent on properties of both 

the soil matrix and the water or other liquid. Equation 1 . 1 5  assumes that the pressure in the 

tube above the miniscus is atmospheric (gage pressure of zero) . For nonzero air pressure, 

equation 1 . 1 5  may be written: 

-2ocos9 
p-pf ( 1 . 1 6) 

r . 

where Pa is the pressure (gage) above the miniscus. For most soil minerals the contact angle, 

e, is zero. 

Taking 9 = 0, Kirkham and Powers (1972) showed that, for general curved minisci, 

p - Pa = o"(total curvature), ( 1 . 17) 

where total curvature = llr1 + 1 /r2• The radius of curvature, r, is positive when it is inside 

the liquid phase and negative when outside the liquid. An example of a three dimensional 

film surface is shown in Figure 1 . 8 .  In this example, 

Figure 1.8. Radii of curvature in three-dimensional space (after Kirkham and 
Powers, 1972). 
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and the pressure will be negative when r1>r2• 

1.3. Soil Water Characteristic 

As shown in Figure 1.9, air-water interfaces in a soil matrix will have much more 

complex shapes than those considered above. Here the soil sample is placed on a porous 

plate which serves to hydraulically connect the water in the soil matrix with water below the 

plate. The porous plate must have small pores which will not desaturate when the outlet tube 

is lowered. Assuming equilibrium when the outlet tube is at z =-a, the hydraulic head �n the 
system is constant, and, since p = 0 at z =-a, H =-a everywhere 3:Ild h = p/pg =-a at z = 0, 
the midpoint of the soil sample. If the outlet tube is lowered a larger distance to z = -b, water 

will drain from the sample decreasing the radii of curvature of the water films. Water will 

continue to drain until the films adjust to give an equilibrium soil water pressure head of p/ pg 
= - b. By measuring the volume of water drained from the sample as the outlet is lowered 

in successive steps, the water content at each step can be determined and plotted as a function 

of the pressure head. This relationship, 9(h), is called the soil water characteristic or the soil 

,._, water retention curve. 

SOLIDS-------

WATER FILLED 
CHAMBER -----� 

Tl 
1 b 

___ _ · ______ j --�-""--- ----------

Figure 1.9. Soil sample on a tension table. 
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Returning to the capillary tube analogy, consider a porous material of total volume V 

made up of bundles of capillary tubes of three different radii, r1, r2, and r3• The total porosity 

is V jV = 0.45 and there are more tubes with the smaller diameters so that V 1N = V 2N = 

V3N = 0.15, where V1, V2 and V3 are the void volumes corresponding to r1, r2 and r3, 

respectively. The porous material is placed on a tension table and initially saturated as 

shown in Figure 1. 1 0. As the outlet is lowered, some water will be released as the miniscus 

in each capillary becomes curved in response to the increased suction. However, the amount 

of water released will be small until the outlet is lowered to z = -h1 corresponding to the 

capillary rise that would occur in a tube of radius r1• At that point the tubes with radius r1 

will begin to drain and will empty when the outlet is h1 + 1 em below the top of the sample. 

Likewise the tubes with radius r2 and r3 will begin to empty (beyond the small amount of 

water released as the curved miniscus is formed) when the outlet tube is lowered to z = -h2 

and z = - h3, respectively. The relationship between pressure head and water content could 

then be plotted as shown in Figure 1 . 1 1 .  Note that if the outlet elevation is raised in the 

l 

Figure 1.10. Capillary tube porous mediu m on a tension table. 
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,-, Figure 1.11. Relationship between water content and pressure head for a bundle of 
� capillary tubes. 

reverse order to the above and water is introduced into the capillaries to establish an 

equilibrium condition at each outlet elevation, the capillary tubes will fill in the same 

fashion. So the relationship shown in Figure 1.1 1  will be the same whether the tubes are 

draining or being filled. Note also that there is a unique functional relationship e(h) for this 

material, i.e. for every e there exists a single h value and for every h there i� a corresponding 

single e. 

z 

1 
Figure 1.12. A porous material made up of nonuniform capillary tubes. 
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Now consider a similar material made up of a bundle of capillary tubes of the three shapes 

given in Figure 1 . 1 2 . Again we will assume that one-third of the total pore volume is made 

up of each of the tube shapes shown. Further assume that the irregular shaped tubes have 

twice as much volume in the big part of the tube as in the thin section. Let hh h2 and h3 be 

the capillary rise that would occur in tubes with radii r h  r2 and r3, respectively. If the outlet 

tube is then lowered to z = -h1 the tubes with radius r1 at the top will drain down to the 

narrow section. If the outlet is further lowered to z = -h2, the irregular shaped tubes will 

empty completely when z= -h2 - 1 .  Likewise the tubes of radius r3 will empty when the 

outlet is lowered to z = - h3 - 1. The relationship between water content and pressure head 

is plotted in Figure 1 . 1 3 .  Now if a water supply is attached to the outlet and the outlet raised 

in the reverse order to the above, the pores will fill but the 8(h) relationship will be different 

than for drainage as shown in Figure 1.13 . That is, when the outlet is raised to z = h2, only 

the narrow section of the middle pore in Figure 1 . 1 2 will be filled, whereas the entire left 

pore plus the narrow section of the middle pore were filled when z = - h2 during drainage. 

In this case the 8(h) relationship is not unique and, for a given h, the value of 8 depends on 

the history of wetting and draining the material. This dependence of 8(h) on whether the 

material is being drained or wetted is called hysteresis and is exhibited by most natural soils. 

A typical soil water characteristic for a natural soil is shown in Figure 1. 14. The dotted 

line ABC represents the drainage relationships which would be obtained ifthe soil is initially 

saturated by wetting under suction or by wetting the sample very slowly so as to exclude 

entrapped air. It is this relationship which is often measured in the laboratory using standard 

techniques. The curve CDE is a wetting or imbibition relationship termed the "resaturation" 

curve by Topp and Miller ( 1 966). The water content at h = 0 (point E) is less than total 

saturation because of entrapped air. It seems likely that in most situations where so-called 

"saturated" conditions exist in the field there will be entrapped air. For example, when the 

water table rises to the surface due to rainfall or irrigation, the process is usually rapid and 

air is entrapped. Then the inain drainage branch of the soil water characteristic for field 

conditions may be represented by EFGC in Figure 1 . 14 .  If during drainage, the process is 

reversed and the sampled rewetted, the drainage and imbibition branches are connected by 
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Figure 1.13. Relationship between water content and pressure head for a porous 
material consisting of the nonuniform capillary tubes in Figure 1.12. 
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Figure 1.14. Typical soil water characteristic relationships for a natural soil. 
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the scanning curves GHD. Likewise, reversal during imbibition would follow the scanning 

curve DF. The reader is referred to Childs ( 1969) for a detailed discussion ofhysteresis. For 

most field soils the engineer will be fortunate to have the drainage and imbibition branches 

of the soil water characteristic and will seldom have access to a full description of the 

scanning curves. For some applications such as drainage or subirrigation one branch of the 

soil water characteristic may be sufficient. In other cases, such as redistribution after 

infiltration, it may be desirable to have a more complete description of the soil water 

characteristic relationships. For most field conditions it is important that the 9(h) 

relationship reflect air entrappment. This will be shown in more detail in a later section. 

When considered with respect to soil nonuniformity and field variability, errors caused by 

neglecting hysteresis may be negligible. However neglecting entrapped air and using curve 

ABC rather than EFGC in Figure 1. 14 may cause large errors in drainage calculations. 

Another property of the soil water characteristic exhibited by ABC in Figure 1. 14 is the 

non-zero air entry suction or bubbling pressure head, hb. This is the threshold suction that 

must be exceeded before air begins to enter the sample .  While this concept is well defined 

for packed soils under laboratory conditions, it will not always hold for field soils which 

have entrapped air and are frequently drained and rewetted. This is especially true for 

surface layers which may have large pores. For example, Nielsen, et al. found that, unlike 

handpacked sieved samples commonly used in laboratory studies, undisturbed soil cores 

from a Panoche soil did not have a non-zero air entry suction. For those soils that have non­

zero air entry suction, the soil may be saturated several em above the water table even though 

the pressure head is negative. 

1.4. Measure ment of the Soil Water Characteristic 

The soil water characteristic can be measured by using a tension table of the type shown 

in Figure 1 .9 .  Here the outlet tube is lowered to given distance h below the sample and the 

volume of water drained is measured. The equilibrium water content is then calculated from 

the known soil volume and the volume of water drained. The tension table is limited to 

pressure heads greater than about -300 to -500 em of water (i . e. tensions less than 300 to 500 

em of water). For greater tensions, air is forced out of solution and the water column in the 
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outlet tube breaks. 

Probably the most commonly used device for measuring the O(h) relationship is the 

pressure plate or pressure membrane apparatus shown schematically in Figure 1 . 1 5. As in 

the case of the tension table and the tensiometer, the porous plate or membrane serves to 

connect the soil water with the water on the opposite side of the plate. The pores in the 

pressure plate are small so that they do not desaturate when the air pressure is increased in 

the sample chamber. For the pressure plate apparatus, the outlet is at a fixed elevation, 

usually at the center of the sample, so the soil-water pressure remains constant at near zero 

(soil water at the top of the soil sample will have a pressure slightly less than zero and that 

at the bottom slightly greater than zero, but this difference is usually negligible) . Air 

pressure is increased in steps and water drains from the sample until the forces holding the 

water in the soil become equal to the pressure forces tending to "push" the water out. It can 

be seen from Equation 1 . 16 that the same curvature (and hence the same soil water content) 

will result in p = 0 and p/pg = he as if p/pg = -he and Pa = 0. Thus the soil-water 

characteristic is determined by measuring the outflow for each pressure step and computing 

the equilibrium water content which corresponds to a pressure head of- pafpg. Detailed 

discussions of pressure plate methods for determining the soil water characteristic are given 

by Klute ( 1 964) and Vomocil ( 1 964) . Most of the published methods for measuring h(O) 

were developed for the drainage or desaturation process. Tanner and Elrick ( 1 958) modified 

a pressure plate apparatus for determining both the imbibition and drainage branches of the 

soil water characteristic. This apparatus, along with the more conventional pressure plate 

devices, is commercially available .  
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Figure 1.15. Schematic of a pressure plate apparatus. 
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: As discussed above, the soil water characteristic is determined with a pressure plate 

apparatus by app�ying a pressure step and measuring the volume of water drained from or 

imbibed by the soil sample. In some cases, particularly for drier conditions (large soil water 

tensions), a long time is required for equilibrium conditions to be established, as indicated 

by the cessation of drainage or imbibition. Su and Brooks ( 1 980) presented a method that 

involved the removal of a volume of water and subsequent measurement of the resulting 

pressure head in the sample. Equilibrium conditions were attained rapidly, but the method 

has not been widely tested and used to date. 

1.5. Soil Water Distribution in Drained Profiles 

The distribution of soil water in a profile drained to equilibrium can be obtained directly 

from the soil water characteristic as shown in Figure 1 . 1 6. For a vertical homogeneous 
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Figure 1.16. Soil column drained to equilbrium with water table at z=d (a); pressure 
head (b) and water content (d) distributions. The water content 
distribution is determined from the soil water characteristic (c). The 

volume of water drained when the water table is lowered from z=L to 
z=d is the cross-hatched area, V d· 
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profile drained to equilibrium above a water table (Figure 1 . 1 6a) the pressure head may be 

expressed as h = d - z (Figure 1 . 1 6b ), where z is the vertical position and z = d is the distance 

of the water table above the datum. The water content at any point can then be o�tained from 

the respective h value and the soil water characteristic (Figure 1 . 1 6c ). Below the water table 

the water content is the effective saturated value, 95, which may be equal to the porosity, n, 

if, prior to drainage, the column was saturated under suction or if it had been saturated for 

a long period of time. However 95 will usually be less than n due to entrapped air as 

discussed in Section 1.3. When the water table is at the surface (z=L), the water content at 

all z will be constant and equal to 95• The volume of water drained, V d• when the water table 

is lowered from z = L to z = d can be obtained by intergrating the area between 9 = 9(z) and 

9 = 95• It is shown by the cross-hatched area in Figure 1 . 1 6d. 

The effect of neglecting entrapped air when calculating the drainage volume is shown in 

Figure 1. 17. If the soil water characteristic is obtained from a sample that is initially 

saturated by wetting under suction, the drainage volume may be overestimated. When the 

water table rises in the field, air is entrapped in most cases and a water content, 95, less than 

total saturation results. While the 95 value may be only 3 to 10 percent less than the total 

porosity, n, the drainage volume calculated using 9 = en at h = 0 is approximately 30 percent 

higher than when entrapped air is considered. 

A profile consisting of two layers of soils with different 9(h) relationships would have the 

same pressure head distribution as shown in Figure 1 . 1 6b. But the 9 = 9(z) would be 

discontinuous at the layer interface as shown in Figure 1 . 1 8 . For this case the water content 

distribution for each layer may be obtained from the respective soil water characteristic. The 

effective saturated water content for each layer must be considered in determining the 

drainage volume for this case as is indicated in Figure 1. 1 8. Often the surface horizons of 

agricultural soils will have better soil structure and higher porosity than the deeper horizons. 

For these soils it will be necessary to consider the soil water characteristics of individual 

layers in order to determine the volume of water to be drained to lower the water table to a 

given depth. 
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1.6. Drainable Porosity 

Drainable porosity is one of the basic input parameters in conventional methods for 

predicting water table drawdown. Drainable porosity is usually defined as the volume of 

water per unit area that is released when the water table falls by a unit distance. In drainage 

design it is conventionally assumed to be constant and treated as a soil property. Childs 

( 1 960) and Taylor ( 1 960) have shown that drainable porosity is not constant but depends on 

water table depth as well as other factors .  Drainable porosity can be determined in the field 

by continuous measurement of water table depth and drain outflow as suggested by Taylor 

( 1 960) and used by Hoffman and Schwab (1964). However, outflow measurements needed 

for an independent determination of drainable porosity are relatively difficult, and it is 

usually more convenient to calculate this property from the soil water characteristic. 

The drainable porosity may be calculated by assuming that the water table recedes slowly 

such that the vertical hydraulic gradient above the water table is zero and the unsaturated 

zone is essential 'drained to equilibrium'· with the water table at all times .  That is, it is 

assumed that the water content distribution at any time is the same as that which would result 

if the water table was stationary at a given position and the profile drained to equilibrium as 

shown in Figures 1 . 16 - 1 . 18 .  Then for one-dimensional (vertical) flow, the volume drained 

per unit area, V d• when the water table drops from the surface to depth L-d, is given by the 

cross-hatched area in Figures 1 .16 and 1 . 18 .  pefining y as the distance from the soil surface 

to the water table, the volume drained (Figure 1. 8) may be expressed mathematically as, 

y 
Viy) = f[e s(z)- e (z)]dz ( 1. 18) 

0 

Where Os(z) is the soil water content prior to drainage, usually assumed constant and equal 

to the effective saturated water content and 9(z) is the equilibrium water content distribution 

which is obtained from the soil water characteristic. 

The relationship between volume drained and water table depth may be determined 

by graphically or numerically calculating V d for a range of water table depths. Relationships 
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are plotted for a uniform Wagram loamy sand and a layered Rains sandy loam in Figure 1 .20. 

The soil water characteristics for the Wagram and the two layers of the Rains soils are given 

in Figure 1. 19. 

.40 
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RAINS PI..OW LAYER .... 
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-1.2 -1 .0 -os -0.6 -o.4 -0.2 0.0 0 
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Figure 1. 19. Soil water characteristics for the two layers of Rains sandy loam and for 

Wagram loamy sand. 

The drainable porosity, f, may be determined graphically as the slope of the drainage 

volume-water table depth relationship. Mathematically the drainable porosity may be 

defined as, 

(1. 19) 

For a constant es and a 'drained to equilibrium' zone above the water table, the shape of the 

soil water profile is preserved. Raats and Gardner ( 197 4) showed that, ·for profile preserving 

flows, f = es - eo, where eo is the water content at the surface (y = 0). In field 
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situations 85 is less than the saturated water content because of air entrapped when the water 

table rises as discussed previously. 

For layered profiles 85 and 8(y) are obtained !rom the soil water characteristics for the 

respective layers. If the Vd versus y relationships of the soil in the top layer, V c12(y), and in 

the bottom layer, vd.(y), are first determined from the soil water characteristics, vd can be 

easily computed for the layered soil as follows. For water table depths less than the depth, 

a, of the top layer, 

( 1 .20) 

For greater depths, 

( 1 .2 1 )  

When the soil is layered the slope of the V d versus y relationship, and thus the drainable 

porosity, will be discontinuous at the depth of the layer interface and equation 1 . 19 will not 

be valid at that point. However f can be defined for all the other depths as discussed above. 

Drainable porosity is plotted in Figure 1 .21 as a function of water table depth for the 

Rains and Wagram soils .  The relationships given in Figures 1 .20 and 1 .2 1 are based on the 

assumptions that the water table is drawn down vertically at a slow rate such that the 

unsaturated zone stays in hydrostatic equilibrium, and that the soil matrix is rigid and doesn't 

deform as water is removed. The effect of an elliptical shape drainage profile on drainable 

porosity was considered by Skaggs et al . ( 1 978). They defined the drainable porosity for 

two-dimensional water movement as the drainage volume per unit change in the mean water 

table depth. Defining the drainable porosity in this way reduced its dependence on the water 

table depth, although, in general , f should still be considered a function of depth to the water 

table. 

27 

-1 



f!M" 

� 
f!M" 

� 

� 

� 

(IIlii>. 

I� 

f!M" 

(IIlii>. 

.� 
tlf!l'll\ 

� 

� 

� 

� 

(!flfJil>, 

� 

� 

� 

� 

!""' 
!""' 
(!flfJil>, 

f"lli" 

� 

.� 

,lf!ill>,. 

(!flfJil>, 

f"lli" 

f"lli" 

� 

,lf!ill>,. 

(IIlii>. 

� 

� 

lf!ill>,. 

"""' 

"""' 

� 

fRI'I" 

E 
E 

.. 
IJJ 
:E 
::::> 
.....J 
0 > 
IJJ 
(.!) 
<( 
z 
<( 
0:: 
0 

160 

140 

120 

100 

60 

40 

20 

0.2 0.4 0.6 0.8 
WATER TABLE DEPTH, m 

1.0 
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1 . 1  

1 .2 

1 .3 

1 .4 

,� 

Problems 

The porosity and the specific gravity of the solids of a 1 00% saturated soil are 

known. In terms of these quantities and with the aid of a properly drawn sketch, 

derive a formula for the water content (Dry w6.. basis) of soil . 

A sample of silty sand has been excavated from a rolled fill .  The sample has a 

volume of . 1  ft.3, a weight of 1 2.4  lbs and water content (wet weight basis) of 1 2%. 

Specific gravity of the solids is 2 .65 .  Find the dry bulk density and the void ratio .  

A sample of moist soil 4as a volume of 40 .5  cc  and weighs 59.2 gms. After drying 

it weighs 48 .3  gms. The specific gravity of the solids is 2 .68 .  Find the water content 

(dry basis), the porosity, and the void ratio . 

Consider a porous material made up of a bundle of 1 em high capillary tubes of three 

distinct sizes, r1 = 0 .0 1 5  em, r2 = 0.003 em, and r3 = 0 .00 1 5  em. The total porosity 

is P = V jV = 0.45 and there are more tubes with smaller diameters to that 

V 1N =V 2/V = V 3N = 0. 1 5 , where V 1 ,  V 2, and V 3 are the void volumes corresponding 

to rh r2, and r3, respectively. The porous material is placed on a tension table and 

initially saturated with water as shown schematically below. Then the outlet tube is 

lowered in steps and the drainage volume measured. Determine the distance h at 

which each tube size will begin to drain and plot the S(h) relationship for this 

material for both drainage and imbibition. Assume cr = 73 dynes/em, and the contact 

angle e = 0 .  
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1 . 5 

1 .6 

1 .7  

1 . 8 

A porous media is made up of a bundle of capillary tubes as shown below. One third 

of the total pore volume (P = 0.45) is composed of each of the tubes shown. r1 = 

0.0 1 5  em, r2 = 0.003 em, r3 = 0.00 1 5  em. Plot both the drainage and imbibition 8(h) 

relationships for this material, a = 73 dynes/em, 8 = 0.  

A sample of Wagram soil with volume V = 1 00 cm3 is  placed in a pressure plate 

apparatus and brought to apparent saturation. The following out-flow volumes were 

measured at equilibrium for the given pressure steps. 

air pressure head 
(em ofwater) 0 1 0  20 30 40 50 60 70 80 1 00 1 50 200 500 
outflow volume 
(cm3 ) 0 0 .3 1 .4 3 . 1  3 .6  3 .4 3 .0  2.2 1 .5 1 .4 1 . 6 1 .5 2 . 1 

After equilibrium was obtained for h = p/eg = -500 em the sample was dried and 

found to have a bulk density of Pb = 1 .64 grn/cc and a dry weight based water content 

of iii = 0.03 1 .  Determine the soil water characteristic from these data and plot 8(h) . 

A column of the above Wagram soil 1 00 em high is initially saturated with the water 

table at the surface. Then a drain is opened at the bottom of the column and the soil 

drains to an equilibrium condition. Plot the water content distribution as a function 

of height 8 = 8(z) for the drained case. How much water was removed when the 

column drained to equilibrium? If the drain was placed 1 0  em from the top and the 

water table lowered to that depth, how much water would be removed? At depths of 

25 em? 50 em? 75 em? Plot the volume of water drained at equilibrium versus 

water table depth for this soil . 

Another soil sample, let 's  call it soil A, has a soil water characteristic given by the 

following table. 

h 0 - 1 0  -20 -30 -40 -50 -60 -70 -80 - 1 00 - 1 50 -200 
8 0.482 0.444 0.429 0 .4 1 8  0 .4 1 0  0.402 0 .396 0 .392 0 .3 8 8  0 .3 8 1  0 .3 72 0 .368  

A soil column is  made up of 50 e m  o f  the Wagram soil over 50  em of soil A. The 
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column is initially saturated, then drained to equilibrium with the water table at a 1 00 

em depth. 

Plot the water content distribution after drainage and show schmatically the volume 

of water drained. Calculate the volume of water drained in em. 

A sample of the Wagram soil in Problem 1 .7 was saturated slowly under suction in 

the lab and the following soil water characteristic determined. 

0 -l Ocm -20 -30 -40 -50 -60 -70 -80 - 1 00 - 1 50 -200 
0 . 380  0 .3 56  0 .325 0.287 0.245 0.205 0. 1 70 0. 1 3 8  0 . 120 0 . 1 03 0 .087 0 .072 

Rework Problem 1 . 7 (for drainage to 1 00 em depth only) using this soil water 

characteristic. The h(S) determinations given in Problem 1 .  7 had entrapped air in the 

saturated (h=O) condition. This one did not. Assuming there will be air entrapped 

in the field, how much error would be caused by using the above S(h) relationship? 
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1 . 1 0 .  A 150 em long co lumn of soil is ini t ially saturated with a ponded 
d epth of 5 em . (a } Plo t hydraulic head , H ;  pressure head . h ;  and 
po sition head versus dis tance z from the bo ttom of the �olumn for 
this case . Let the datum be at the bottom o f  the column . (b) · Plot 
the same quantities af ter the column bas drained to equilibrium with 
the wa t er table at the bottom o f  the column . The soil water character­
i s t ic is g iven below . {�ow much water drains out when the water table 
is lowered from z = 150 to z = o1 

· - · - � - -J&O 
. �  . ... .. ___ � .. - .. _ - ·-· - - · - -· · . . .. 



r-- 1 . 1 1 .  A 200 em long soil column (Figure 1 )  is made up of 1 00 em of soil B over 1 00 em 

� of soil A. The water table is initially 75  em from the surface (at z=125  em) 

r-- (condition 1 )  and the column is drained to equilibrium above the water table. Then 

� the outlet tube is lowered to a depth of 1 75 em (z=25 em) (condition 2) and the 

� column is allowed to drain to equilibrium. 

a. 

b. 

c. 

d. 

e. 

1 . 1 2 . 

a. 

B .  

Plot the hydraulic head, pressure head, and position head o n  Figure 1 for 

condition 2 where the water table is 1 75 em deep (at z=25 em). 

Plot as broken lines the H, h, and z distribution for condition 1 when the 

water table was 75 em deep (z= 1 25 em). 

Plot the water content distributions for the two cases in Figure 2 .  The soil 

water characteristics are given in Figure 3 .  
How much water drains out when the water table is lowered from z= 1 25 to 

z=25? If the column is a cylinder with diameter 30 em what is the volume 

of water drained? 

What is the drainable porosity when the water table is 1 75 em deep (i.e .  at 

z=25 em)? 

ydraulic conductivity between points 1 and 2 in Figure 3 is 1 em/hr. 

3 
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Chapter 2

WATER MOVEMENT IN SOIL

2.1 Darcy's Law

The principle relationship used to describe the flow of liquid in porous materials was

derived from results of experiments by Darcy in 1856. He found that the flowrate of water

through sand beds of different thicknesses was proportional to the hydraulic gradient.

Darcy's law is illustrated by Figure 2-1 and may be written as,

Hl " Hl (2.1)

Figure 2-1. Illustration of Darcy's law for flow in a soil column.

Where Q is flowrate through the soil column (cmVhr), A is the cross-sectional area, L is the

column length in the direction of flow, H, and H2 are the hydraulic heads at the ends of the

2.1



column, and K is the proportionality constant which is termed the hydraulic conductivity or

permeability. Equation 2.1 may be written as,

U . TV

(2.2)

where q is defined as the soil water flux and has units of velocity (e.g. cm/hr). The flux is

also sometimes called the discharge velocity and is equal to the flowrate per unit area of soil.

Note this is not equal to the velocity in individual pores but is defined as the flowrate per

unit area.

The flux may be defined in terms of the hydraulic gradient at a point as,

q = -K^ (2.3)
as

where s is distance in the direction of flow and the negative sign indicates that flow is in the

direction of decreasing hydraulic head. In general flux should be regarded as a vector

quantity having both magnitude and direction. Then equation 2.3 would be more correctly

written

^ (2.4)
ds

for flow in three dimensions, q = qxi + qyj + qzk (2.5)

and Darcy's law may be written q = KVH (2.6)

q = -

dX dy dZ

(2.7)

where i, j and k are unit vectors in the x,y, and z directions.

2.2. Flux, Point Velocity, and Seepage Velocity

Flux is defined in equation 2.3 and 2.4 from the macroscopic point of view.

Conceptually, flux, or discharge velocity, can be related to the actual or microscopic velocity

in a porous media in the following way. Let the actual velocity be represented by U(x,y,z,t)

where x,y,z are position coordinates and t is time. Then the component of flux in the s

direction, qs, may be defined as

2.2



= 7 fj Us(x9y9z,t)dA (2.8)

where A is the area of a circle oriented perpendicular to the s direction centered at x0, y0, z0

(Figure 2-2), the size of the circle being small with respect to the total flow area but large

with respect to the size of the pores and solid particles, and Us(x,y,z,t) is the actual velocity

in the s direction at point x,y,z,t. Then by moving A around the flow domain the flux can

be defined at all points in the flow domain.

Figure 2-2. Schematic of flow cross-section for deflning flux in terms of microscopic

velocity.

The seepage velocity, or velocity of advance, V, is defined as the average velocity in

the pores and is higher than the flux. The relationship between seepage velocity and flux can

be defined by considering a column of length, L, and cross-sectional area, A. Let Ap be the

cross-section area of the pores at any position, z, along the column, Ap = Ap(z). Define

M =M(z) = Ap(z)/A.

From continuity
so

Ap

2.3



where A. is the average area of pores,

where Vp is the total volume of pores. Then,

A~ V —a
—± = —4 = VD = n , the total porosity, and V = ^
A LA -\>» n

*4

(2.9)

2.3. Derivation of Dairy's Law - Capillary Tube Analogy

Although Darcy's Law was developed from experimental studies, it may be deduced

from the Nayier-Stokes equations which describe the movement of a viscous fluid in general

space with unspecified boundary conditions (c.f. Childs, 1969, Note 17). In this section we

apply the basic concepts of fluid mechanics to derive equations governing the flow of liquids

in small closed channels, and compare these equations with Darcy's Law. Consider the

steady flow of a liquid in a uniform tube as shown in Figure 2-3.

Figure 2-3. Laminar flow of liquid in a tube.
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Applying Newton's second law to the small cylindrical section of radius r and length L gives

since the flow is steady and the cross-section uniform, acceleration, as=0, and

The forces acting in the s direction are the pressure forces at the ends of the section, the s

component ofthe weight, W, and frictional or drag forces acting along the sides. Therefore

S = (Pi - P2) rcr2 - W sin 0 + x27irL = 0 (2.10)

(2.11)
dr

where p, and p2 are the pressure at points 1 and 2, and t is the shear force acting at the sides of

the section. Assuming laminar flow, t can be determined from Newton's law ofviscosity as,

W = pg7ir2L (2.12)

substituting Sin0 =
Z, - Z

- , (2.11) and (2.12) into (2.10) and rearranging yields

dV

dr
= \P2 ~ Pi (2.13)

Further rearranging the numerator gives,

dV

dr

El + z. El
PS

+zt
Pgr

2L\i

or

dr 2L\x 2L\i
(2.14)
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Multiplying both sides of (2.14) by dr and integrating using the condition that V=0 at r=R

gives,

V = PS^L (r2 - R2) (2.15)
4\lL

Thus, the velocity- profile for laminar flow in a tube is parabolic with maximum velocity at

the center, r=0. Note that AH=H2-H! is negative for flow in the +s direction.

The flow rate Q may be obtained from (2.15) as follows

dQ = VdA = V2radr

Q = jf V2nrdr
r=0

Substitution of (2.15) and integration yields Poiseuille's equation,

O = - nR4PS . AE (2.16)

then

A 5|J, L,

which is directly analogous to Darcy's law, equation 2.3, where the effective hydraulic

conductivity of the tube is K = —£& . Notice that K is dependent on both the properties

of the material (R2) and the fluid (pg/|i).

2A Validity of Darcy's Law

Darcy's Law is usually assumed to be valid as long as laminar flow conditions exist.

This is consistent with our capillary tube analogy where laminar flow was assumed in the

derivation of (2.17). Harr (1962) states that Darcy's law may be assumed valid when the
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Reynolds number Re = —— < 1 , where D is the equivalent particle diameter for the

media. Since Re = 1 is the critical Reynolds number for flow about a sphere, this condition

would correspond to the transition between laminar and turbulent flow. Childs (1969) cited

work by Faucher, et al., that showed Darcy's law may not be safely applied for Re>l. For

higher q values (and therefore higher Re) there will be a less than proportional increase in

q with increase in the hydraulic gradient as shown in Figure 2-4. This infrequently happens

for water movement in soil but may occur in drain envelopes or in the toe drain of a dam

where large particle sizes exist.

H

Figure 2-4. Non-proportional relationship between flux and hydraulic gradient for

large Re.

The failure of Darcy's law for small hydraulic gradients has' been discussed by

Swartzendruber (1963). He found that for some cases the flux could be more accurately

expressed as,

q = B[I-J(l-eCI)] (2.18)

where q is flux, I is hydraulic gradient, dH/ds, and B, J and C are constants depending on the

soil.
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2.5. Intrinsic Permeability

As demonstrated above for liquid flow in a capillary tube, the hydraulic conductivity

is dependent on both properties of the porous media and on properties of the fluid. In order

to separate these effects and define a property that depends on the media or soil matrix alone,

the intrinsic permeability or simply, permeability, k, is defined by,

K = p 8 k (2.19)

Equation (2.19) can be used to estimate the conductivity of a porous media for a given fluid

from the known conductivity for another fluid. However, as pointed out by Childs (1969)

"it is hazardous in the extreme to suppose that one can change to a different fluid without

causing more or less profound changes in the internal pore geometry of the soil." The

hydraulic conductivity is in fact dependent on interaction between the soil matrix and the

flowing fluid so equation (2.19) will serve only as a means of approximating the change in

K with a change in the fluid. Perhaps the most useful application of (2.19) is to estimate

changes in the hydraulic conductivity due to temperature which has a known effect on \x and

P-

Then for the capillary tube,

K =
2ei

so

8

2.6. Anisotropy

Thus far we have assumed that the hydraulic conductivity is independent of the

direction of the flux. Such a soil is said to be isotropic. Further, if the hydraulic

conductivity is independent of both direction of flux and location in the soil, it is said to be

homogeneous and isotropic. If the conductivity is the same at all points in the flow domain

but is dependent on the direction of flux, it is homogeneous and anisotropic. In
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homogeneous, anisotropic soils the hydraulic conductivity is dependent on the flux direction,

but this directional dependence is independent of its position in space.

Harr (1962) notes that most soils are anisotropic to some degree. Sedimentary soils

may exhibit thin alternating layers of varying conductivity. Generally the hydraulic

conductivity in homogenous natural deposits is higher in the horizontal direction than in the

vertical direction. However some agricultural soils develop massive columnar structure

resulting in vertical channels and higher vertical conductivity than horizontal. Root channels,

worm holes and other biological activity may also cause the same effect.

It is obvious that some modifications must be made to use Darcy's law for anisotropic

materials. Childs (1969) presents a simple yet elegant explanation of the use of Darcy's law

for anisotropic soils. See this reference for a more complete discussion of anisotropy. Childs

used the capillary tube analogy to show that a gradient in the x direction may affect flux in

the y or z directions. For an anisotropic soil, the x,y and z flux components may be

expressed as follows:

qx = -Kxx dH/dx-Kxy dH/dy-K^dH/dz,

qy = -KyX dH/dx-Kyy dH/dy-KyzdH/dz,

qz = -K.y dH/dx-K^ dH/dy-K^dH/dz. (2.20)

And as in equation (2.5),

q = qx i + qy j + qz k

Darcy's law for anisotropic materials can be more conveniently written as,

q = - K • VH (2.22)

where K is a tensor and may be written,

Kxx K Kxxz

K =

The dot product of the tensor K and the vector VH is the vector q. The component KCm may

be interpreted as the coefficient that when multiplied by the component 3H/8m of the

hydraulic gradient will give the contribution of the gradient in the m direction to the flux in

the { direction. Bear (1972) indicates that K is symmetrical so that K^ = K^ and only 6

rather than 9 different components are required. Fortunately, we think that many agricultural
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soils have principle axes in the x,y, and z directions so that k,m = 0 for i *■ m; all terms

except the diagonals in (2.22) are zero, and

2.7. Flow in Unsaturated or Partially Saturated Soil . ^

The equation for flux in an unsaturated or partially saturated soil has the same form *

as Darcy's equation and may be written,

$L (2.24) ^

where the hydraulic conductivity is a function of the water content, 0. Since the relationship

0 = 0(h) is a property of the soil (albeit also dependent on the wetting and drying history due ^

to hystersis), for soil water systems exposed to the atmosphere, we may write h = h(0), and ^

therefore K = K(h). Then ^

q = -K(h) ^ (2.25)
as

Recall that H = h + z where z is the vertical distance above the datum. Then for flow

in the horizontal direction, x,

q = -K(h& (2.26)
x dx

and for vertical flow - ^

jqz = ~K(h) j^ (h + z),

= -Kih) ^ -K(h) (2.27)
dz

2.10



dh dh d0 dh
We may also write "T"=^^" ~t~ > where ^ can be evaluated from the soil water

ds do as do

characteristic and is itself a function of 0. Then we can write equation (2.26) as:

~dx~'qx = -AW-TT —*

or

■? (2-28)

where D(0) = K(0) -rr is defined as the soil water diffusivity having units of L2/T (e.g.

cmVhr). Likewise equation (2.27) may be written:

qz = -DQS& - K(Q) (2.29)
az

For unsaturated soils the water moves primarily through films located around and

between solid particles. As the water content decreases, the cross-sectional area ofthe films also

decreases and the flow paths become more limited. The result is a hydraulic conductivity

function that decreases rapidly with water content a shown in Figure 2-5 a. In most cases

hysteresis in the K(0) relationship is small. However, when K = K(h) is used as in Equation

(2.25), hysteresis may be quite pronounced due to hysteresis in the h(0) relationship (Figure 2-

5b). There is some advantage in expressing the flux in terms of the water content gradient

(Equations (2.28) and (2.29)) in that D(0) varies over a smaller range and is less nonlinear than

the corresponding K(0) (Figure 2-5c). Note, however, that d9/dh = 0 for h > 0, and D(0) is not

defined for positive pressure heads. Therefore, these equations cannot be used for saturated flow

or for combined saturated-unsaturated flow.

• Swartzendruber (1966) noted that the essence of the development of equations for

unsaturated flow (Equations (2.24) through (2.29) was originally set forth byBuckingham (1907)

and suggests that they be called the Buckingham-Darcy equations to reflect their historical

origins.
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Figure 2-5. Schematic of the K(0), K(h), and D(0) relationships for soil. Hysteresis is

exhibited by the K(h) and D(0) functions.

2.8. Equation of Continuity

One of the basic relationships for flow of water in soil, and for the fluid mechanics

in general, is the principle of conservation of mass. For any specified volume, V, in the flow

domain the principle of conservation of mass may be written as in equation (2.30). Consider

the special case of flow in one direction only (Figure 2-6). At any time the total mass in the

incremental volume of length Ax and cross-sectional area A is p0V where

TRate mass isl = (Rate Mass? - fRate mass?
(.stored in V J Renters V J (leaves V J (2.30)

Figure 2-6. Flow in one dimension only.
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V = AAx. Therefore the rate mass is stored is —— Mass enters the volume at a rate
a

of Aqplx and leaves at a rate of Aqplx+Ax.

But V = AAx and the density may be assumed constant, so dividing both sides by ApAx, the

above equation may be written as,

ae = q\x ~ q\x + ax
at

Let Ax -» 0 and the right side is -—^ . Therefore for flow in the x direction only
dX

(2.31)

at dx

The continuity equation for three dimensions can be derived by extending the above

to an incremental volume with sides Ax, Ay, and Az (see Problem 2-2).

A general form of the continuity equation may be derived for an arbitrary control

volume, V, by employing the divergence theorm. Referring to Figure 2-7,

Figure 2-7. Arbitrary control volume in a three dimensional flow Held.
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the total mass in the control volume at any time is,

jjj P0 dV

V

and the rate ofmass stored is therefore

|///pe dV (2.32)

For a fixed volume

i m*dv - mi ?edv

Note also that the net rate that mass enters V through any incremental surface area, ds, may be

written as,

- p q • n ds

where n is a unit vector perpendicular to the surface at all points on the outside surface of V.

Then the net rate mass enters V is J J-q.n pds

and

fpejv. -// P ? •; a (2.34)
V S

From the divergence theorm

ff p q • n ds = fff V • pq dV

where, for rectangular coordinates, V represents the operator — *r + — jr + — k-
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Substituting into (2.34) and re-arranging we get

dV" ° (235)

Because V is arbitrary, the only way (2.35) can hold is,

-^H^ + V • pq = 0
dt H

Assuming the density of water, p, constant we get

* = - V • q (2.36)

Equation (2.36) is a general form of the continuity equation and for rectangular

coordinates may be written as,

36 dQx &Iy %U
dt dx dy dz

39

2.9. Flow Equations

The governing differential equations for flow in both saturated and unsaturated soils

may be obtained by substituting the expression for flux into the continuity equation (2.35).

For the general case of anisotropic unsaturated flow we may write

— = - V • [ KteyVH ] (2.37) .

where K(9) is the hydraulic conductivity tensor for unsaturated conditions. If the principle

axes of the conductivity tensor are aligned in the x,y, and z directions K{m = 0 for 0. ^ m, and

equation (2.37) may be expanded to
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ae

dt

d_

dx

dH

dx dy f (2.38)

Recall that H = h + z. Then for isotropic conditions equation (2.38) may be written as

59 _ d

dt dX
K(Q) 21 ± \m &

dZ dz dz
(2.39)

From the soil water characteristic, 0 = 0(h) or h = h(0) is known so we can write (2.39) in

terms of a single dependent variable, either 0 or h.

90 _ d0 dh _ /^/U\ dh

dt dh dt dt

where

C(h) = . — is a function of h and is called the soil water capacity. Then equation (2.39)
dh

may be written

K{h) ™\ + -2.
ajcj dy

K(h) %
^y dZ dZ dZ

(2.40)

Equation (2.39) may be written with 9 as the dependent variable by using the soil water

diffusivity as defined in Section 2.7. Thus,

39

a dx dX dy dy
4
dz

D(&)
ae

dZ

, dK(B)

dZ

(2.41)

Equations (2.39), (2.40), and (2.41) are forms of Richards equation (Swartzendruber,

1969). Equation (2.41) has certain advantages over other forms of the Richards equation for

some applications. As noted in Section 2-7, D(0) has a smaller variation from "wet" to "dry"

conditions for most soils, than does C(h) and K(h). Therefore equation (2.41) is "less

nonlinear" and somewhat easier to solve numerically than (2.40). Further, for horizontal flow

only, the last two terms in (2.41) fall out and only one soil property, D(0), is needed for
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^ solving the equation as opposed to both C(h) and K(h) for equation (2.40). The big

disadvantage of (2.41) is that it is not valid for h > 0 (saturated flow) because D(6) is

undefined. Thus (2.41) cannot be used for situations where part of the flow domain is

saturated. Since both saturated and unsaturated flow are involved in most drainage situations,

^ equation (2.40) is the form of the Richards equation normally used for drainage.

f* When the flow domain is saturated, or apparently saturated as discussed in section 1-3,

^ 30/9t = 0 and the hydraulic conductivity is no longer a function of 0 or h. Then the

^ governing equation for homogeneous anisotropic soils may be written as,

V K VH = 0 (2.42)

or when the principle axes are in the x, y, and z directions,

-K *? + Kj£ = 0 (2.43)
dx2 w dy2 "dz

For isotropic conditions K^ = Kyy = K^ = K and (2.43) becomes

Q

dx2 dy2 dz2

or V2H = 0 (2.44)

Equation (2.44) is called the Laplace equation which is a familiar equation in potential field

theory. The Laplace equation is common to theory governing heat flow, electric and

magnetic fields as well as related potential field situations in fluid mechanics. In fact one

method for obtaining solutions for soil water movement is to set up an electric field or

viscous flow analog, measure the results and then scale back to the water movement problem.

Analytical solutions that have been derived for heat flow or other analogous fields are often

useful for the flow of water in soils.

2.10 Saturated One-Dimensional Flow

For saturated flow in the vertical direction equation (2.44) reduces to

o

dz2

Integrating twice we obtain H = Qz + C2 where Q and C2 are constants. But at z = 0, H

= p/y + z = 0 so C2 = 0. At z = L, H = d+L so d+L = C,L and C, = (d+L)/L.
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Figure 2-8.

Therefore

Distribution of hydraulic head, H, pressure head, h, and position head z for

vertical flow in a homogeneous column.

(2.45)

and the distribution ofH, h, and z are plotted in Figure 2-8 above. The flux can be determined

simply from Darcy's law as

(2.46)q, = -a— = -A

Hz dz L

where the negative sign indicates that flow is in the -z direction.

Although the flux could have been obtained directly from Darcy?s law (as in equation

(2.2)) without first determining H as a function ofz, procedures similar to the above are usually

required for more complex flow situations. First the problem is defined and the proper form of

the governing equation is identified. Then a general solution of the differential equation is

obtained in terms of arbitrary constants (C l and C2 in the above case). The constants are

evaluated in terms of boundary and initial conditions giving an expression
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for H in terms of position. Then the flux can be obtained at any point in the flow domain

by applying Darcy's law.

For saturated, one-dimensional flow in layered soils the equation = 0

holds in each of the layers. So for Figure 2-10, H = Cx z + C2 in layer 1 and H = C3 z + C4

in layer 2. When z = 0, H = H3 = 0. Therefore in the bottom layer H = C3z.

H.h.Z

Figure 2-10. Vertical flow in a layered column with K,/!,, >

Since the flux in layer 1 is equal to that in layer 2, qx = -A,—— = q2 = -K2—=—'■
Lx L2

Where AH, = H, - H^and AH2 = Hx- H^ Then
AH. KJbu T KjH
—J- = -^- f and, H2 = l
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For the bottom layer H = H2 at z = L2 so C3 =

H =

K1H1

12 "

and

(2.47)

Solving for C, and C2 in the top layer we obtain

HXK2
H = .. . * .! . z +

KXL2
(2.48)

The hydraulic, pressure, and position heads are plotted in Figure 2-10 for a case where KxfLx

> K2/L2 . When K,/L, < K2/L2 equations (2.47) and (2.48) still hold and the head

distributions are as shown in Figure 2-11.

i -'-

H. h. Z

Figure 2-11. Vertical flow in a layered column with K^ < K2fL2.
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In this case there is a greater loss of hydraulic head in the top layer than in the bottom layer.

We have tacitly assumed that the layered soil is saturated and that the sides of the column

are impermeable to both air and water. Under these conditions it is interesting to note that

the soil water pressure is negative over most of the column length. It seems reasonable that

we could attain saturated or nearly saturated conditions in the column by initially wetting it

under suction or by turning it on its side and letting water flow through the column for a long

time. However, saturated conditions at negative pressure heads, which could be quite large

in absolute magnitude for certain values of Kj/L, and K2/L2, would seem to be contrary to

the relationship between 0 and h discussed in section 1.3. Recall that in discussing the 0 =

0(h) relationship we assumed that air could enter the soil matrix without resistance to replace

water drained out. For the situation shown in Figure 2-11, air cannot enter the column so the

soil stays saturated. Equations used to characterize flow for unsaturated or combined

saturated-unsaturated conditions, such as the Richards equation, usually assume that air moves

with negligible resistance and is always at atmospheric pressure in the soil matrix. This is

not always the case and can lead to significant errors.

2.11. Equivalent Hydraulic Conductivity for Layered Soils

H,

H*

Figure 2-12. Layered medium.
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When flow is perpendicular to a series of layers as shown in Figure 2-12 the flux through

each layer is the same. Thus

q =

Solving for the AH's we obtain

H1-H2 = qD1/K1

H2 - H3 = q Dj/K2

Hn., - Hn = q D

Adding both sides of the above we obtain

H, - Hn = q (D,/K, + D^2 + ... + DJKJ

Then an equivalent hydraulic conductivity, K,., can be defined such that

q ^D

where D = D, + D2 + ... + Dn and

Ke = D/(D,/K, + Dj/K2 + Da/Ka + ... + D,/Kn) (2.49)
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For flow parallel to the layer q = qx + q2 + ... + q,, and IQ may be defined as

Ke = KlL>l + K2°2 + + KnDn (2.50)

The equivalent conductivity can be used to determine flow rates from the hydraulic heads at

the end points, Hj and H,,.

2.12. Saturated Two-Dimensional Flow - Velocity Potential

For saturated flow in two dimensions, Laplace's equation can be written

3 . (2.51)o

ax2 dy2

Usually we are interested in two-dimensional flow in a vertical section or profile so y in

(2.51) represents the vertical position and x the horizontal position. H = H(x,y) is commonly

referred to as the potential function and the locus of points where H is constant as

equipotential lines. For convenience a function called the velocity potential, <|>, is often used.

It is defined as

4 = -KH = -K(p/pg + y) (2.52)

Then u = qx = 9(|>/3x and v = qy = 3cJ)/3y where u and v are the fluxes in the x and y

directions, respectively. Some authors (e.g. Kirkham and Powers, 1973) define <|> = +KH so

that u = -3<|)/3x, etc. However, in either case, lines of constant ty are also referred to as

equipotential lines. Also note that

=o

dy2

dx

v = q - it (2.53)
y dy
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2.13. Stream Function

In previous sections we have discussed the existence of hydraulic head or potential

function H = H(x,y) or the velocity potential ty = (|>(x,y) which is defined at all points in the

flow region. It is useful to define another function, also defined at every point in the flow

region, and called the stream function \|/ = \|/(x,y). This function is defined such that

u = dtyldy , v = -d^ldx (2.54)

Therefore

** = it (2.55)
9x dy

and

^* =~i?i (2.56]
dy dx

Equations (2.55) and (2.56) are the important Cauchy-Reimann conditions.

From (2.55) and (2.56) we can also readily see that

= 0 (2.57)

dx2 dy2

The locus of points for which \j/ = constant is called a streamline. Physically,

streamlines represent paths of flow as may be demonstrated by placing dye at various

positions in a sand tank model as described by Luthin (1957). This may also be shown by

considering a streamline as in Figure 2-13.
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Figure 2-13. Streamline slope.

Since y = constant, d\|/ = 0 along AB. But dip- = — dx +-3L dy
dx dy

the streamline at any point x,y along AB is given by

dy dty/dx V ,
-^- =.-—Ci— = — = tana
dx di|r/dy U

so the slope of

(2.58)

Thus the tangent to the streamline at every point x,y is in the flow direction so the streamline

represents the flow path as stated above.

For an equipotential line ty = constant and

= it dx +Q dy
dx dy

The slope of equipotential lines is

dx

u_

V
(2.59)

which is the negative reciprocal of the slope of streamlines. Thus equipotential lines are

perpendicular to streamlines in the flow region.

Figure 2-14 illustrates flow between two streamlines \|/, and V|/2.
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Figure 2-14. Flow between two streamlines \|/, and \|/2.

To determine the flowrate Q we simply integrate the term AQ = qx dy from y = a to y = b.

Then

SO

Q = Vi - v|/2 (2.60)

Thus, the flowrate between two streamlines is simply the difference in the stream functions

\|/, and \|/2.

Finally, it should be pointed out that y = V|/(x,y) can be determined from <|> = (|>(x,y)

and vice-versa.

= §1 dx + *t dy
ex dy *

dx
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so

f = f - Q dx + **
•> ay a*

Likewise

4> = | —^ dx - —v- dy
J dy dx J

2.14. Boundary Conditions

The Laplace and Richards equations were derived from fundamental relationships, the

Darcy or Buckingham-Darcy equations and the law of conservation of mass. The resulting

partial differential equations are valid for all points in the flow domain. Thus any solution

H = H(x,y,x,t) must satisfy the governing partial differential equation (G.P.D.E.). However

the converse is not true. That is, a relationship that satisfies the G.P.D.E. does not

necessarily describe H = H(x,y,z,t). A simple example of this is equation (2.45) for vertical

flow in a homogeneous soil. Here the equation H = Cx z + C2 where Cx and C2 are arbitrary

constants, satisfies the G.P.D.E., d2H/dz2 = 0. However the actual solution is given by only

one set of constants, Cx = 0, Cx = (d+L)/L, which were determined from the boundary

conditions. Thus, in order to define a problem such that a unique solution H = H(x,y,z,t) can

be obtained, it is necessary to identify both the appropriate G.P.D.E. and the boundary

conditions. When this is accomplished the problem is said to be "well posed".

There are essentially four types of boundary conditions encountered when steady

saturated flow exists. These are demonstrated in Figure 2-15 for seepage from an irrigation

canal to interceptor drains. For this case the flow domain is symmetrical with flow rate in

the right one-half of the profile the same as in the left one-half and the hydraulic head

distributions in one half being the mirror image of that in the other half. Thus the problem

can be solved by considering only one-half of the flow domain and noting that there is no

flow across the center line AB. In this case we will neglect flow in the unsaturated zone and

consider the saturated region ABCDEFG only.
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Figure 2-15. Seepage from a canal to interceptor drains.

Boundaries covered by water. The pressure distribution along boundaries

covered by water may be taken as hydrostatic. Thus the hydraulic head is

simply the distance of the free water surface above the datum. For example

in Figure 2-15, H = b along boundary BCD, and H = d along FG.

Boundaries of constant flux.
dH

From Darcy's law q = -K .
4n dn

Therefore — = —^ here n is the direction normal to the boundary and

qn is the flux across the boundary. Normally this boundary condition is

applied for impermeable boundaries where qn = 0 and dH/9n = 0 such as along

boundaries AB and AG in Figure 2-15. However a non-zero flux is

sometimes used. For example, because of the characteristics of the underlying

material there could be constant vertical seepage of qn = 8 along the boundary

AG. Then that boundary condition would be written dU/dy = -e/K.

Free surface boundaries. In Figure 2-15 DE is the water table or the free

surface and represents the upper boundary of the saturated region. This

surface is defined as the locus of points where the soil water pressure is

atmospheric. Thus h = p/pg = 0 and H = y + C where C is a constant, if the

datum plane is at the origin C = 0 and H = y. When unsaturated flow is

neglected the free surface is treated as a streamline, across which there is no
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flow. Actually this is only an approximation as some flow will enter from the

overlying unsaturated zone. However if Laplace's equation is taken as the

G.P.D.E. then DE must be assumed a streamline. This approach is taken in

most books on groundwater and seepage.

4. Surface of seepage. The surface of seepage (EF in Figure 2-15) represents a

boundary where water exits the flow domain. As with the free surface the

pressure is zero so h = 0 and H = y. The surface of seepage differs from the

free surface (water table) above, in that it is always on a boundary between the

soil and the atmosphere and there is flow across the surface of seepage while

the free surface is assumed to be a streamline.

Two separate approaches can be made to problems such as the one shown in Figure

2-15. We can neglect flow in the unsaturated zone as indicated above and use Laplace's

equation as the G.P.D.E. This traditional approach, which would be taken by most

groundwater hydrologists, would require definition of the free surface DE, the upper boundary

of the saturated regime. Another approach would be to use the Richards equation (Equation

(2.40)) for steady state; i.e. dh/dt = 0. Then the upper boundary condition would simply be

the condition at the physical boundary of the flow domain, the soil surface. While the

boundary conditions would be easier to describe, the G.P.D.E. is more difficult to solve and

the required soil properties are more difficult to obtain since K(h) rather than just K^, the

saturated hydraulic conductivity, is needed for this approach. Generally the first approach

will be easier to use because methods for approximating the free surface are available for

most situations. However the later approach is more exact and will be necessary for certain

situations as we shall see later.
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PROBLEMS

2.1. Derive the equation for viscous flow between closely spaced parallel plates and

present the result in a form analogous to Darcy's law. Use a flow path length of L

between points 1 and 2 where the pressure is p, and p2. The distance between the

plates is 2B.

L

P,

X \

\

i

Answer: O = —
3

, - H2)
Pg

A = 2BX1 = 2B

en rt — ^^ — _

P8

2.2. Derive the equation of a continuity for flow in an unsaturated isotropic material for

(a) rectangular coordinates (b) cylindrical coordinates.

2.3. Repeat 2-2 (a) for an anisotropic material which has its principle axes of the hydraulic

conductivity tensor, K, in the x,y, and z directions; i.e. K^ = 0 for St * m.
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2.4. In the above sketch d2 = 0, d, = 5 cm, Lj = 40 cm, L2 = 35 cm,, K, = 15 cm/hr, K2

= 5 cm/hr. (a) Find q Plot (to scale) H vs. Z and h = p/pg vs. z. (b) Rework Part

a for d2 = 20 cm.

2.5. Work pb 2-4 (parts a and b) with K, = 5 cm/hr and K2 = 15 cm/hr.
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2.6. Determine the downward seepage in the layered system above. What is the head loss

across the 6' layer?

2.7. The hydraulic conductivity between 1 and 2 above is 1 cm/hr. (a) What is the

flowrate? (b) In which direction does water flow? (c) What is K between points 2

and 3?

2.8. (a) What is the seepage rate under the dam shown below? (b) What is the pressure

force tending to lift the dam vertically upward? (c) Where does this force act? (d)

What is the pressure head at point A, 5' from the upstream face of the dam?

— Imtt-mtcJbK.
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2.9 The following solutions were proposed for two-dimensional saturated flow in an

isotropic, homogeneous soil. Are they valid solutions to the governing equations?

a. ty = -KH = In x + lny

b. i|/ = x2 + 3y2 + 2xy

c. (j> = x2 - y2 - 3x + 4xy + 2y

d. i|j = cxn where c and n are constant integers.

Find the values of c and n for which this is a possible solution.

e. (j) = sin"1 x/y

2.10. For a given flow regime in a uniform isotropic soil, the stream function (\|/ (x,y) is

ijj = x2 - y2

Determine the potential function (x,y) and the magnitude and direction of the flux at points (1,0),

(1,1) and (2,0).

2.11 The following solution was proposed for saturaJetTnow in a uniform, isotropic soil.

= x3y0xy3

a) Is this a solution to the Laplace Equation? (Show your work).

b) If it is, find the stream function \|/ (x,y).

2.12 Repeat problem 2.11 for the following function

(J) = 4x2 + 2xy - 4y2 + 9
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Soil is enclosed in a container with impermeable sides except at the top where water flows

in and at each end where water flows out. Assuming the soil is uniform and isotropic,

a) Write the governing equation for the above situation. Define each term.

b) What are the boundary conditions for this problem?





CHAPTER 3

SOLUTIONS FOR STEADY SATURATED FLOW

Although steady saturated flow rarely occurs in agricultural drainage situations, it is

nevertheless important in developing methods to characterize drainage. The solution methods

demonstrated in this chapter will be useful for a variety of other water movement problems.

Most of the solutions presented here may be found in other sources (e.g. Luthin, 1957;

Kirkham and Powers, 1972). They are presented here to demonstrate solution techniques and

to provide source material for engineering calculations and approximations.

3.1. Flow Net Solutions

One of the oldest and most useful methods of characterizing steady saturated flow is

the flow net. Although this graphical procedure often requires tedious trial-and-error

adjustments and a certain amount of practice and patience on the part of the user, it is one

of the more valuable methods for solving two dimensional flow problems. We have shown

already (2.13) that streamlines and equipotential lines intersect at 90° angles and thus form

an orthogonal network in the flow regime. Consider the equipotential lines and streamlines

in Figure 3-1.

The flowrate between two streams, \|/, and \|/2 is,

AQ = qkn = -K-^—± Art = i|r2 - i|r2

If the flownet is drawn throughout the flow domain such that Avj/ = V|/2 - \yx = \|/3 - \|/2

... then AQ will be the same as given above for all stream tubes and Q = Z AQ = NfAQ

where Nf is the number of flow channels or stream tubes. Likewise we can draw the

A ff
equipotential lines such that 1^ - Hl = H3 - H2 = ...=— where Ne is the number of

equipotential drops from the point where flow initiates to its exit.
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Figure 3-1. A network of streamlines and equipotential lines.

Substituting into the above we have,

(3.1)

Note that we have not limited the number of equipotential lines or streamlines that can exist

in a given flownet. We will now choose to draw enough equipotential and streamlines to

insure that An = As and,

Q - - A* (3.2)

Then the equipotential and streamlines are drawn such that every streamline crosses every

equipotential line at a right-angle and form a network of curvilinear squares. A choice of As

= 2An or An = 2As would have been equally valid but the rectangular enclosures resulting

would be harder to accomplish by visual inspection for most cases.

An example of a flownet for seepage under a weir is given in Figure 3-2. If the

datum in 3.2 is taken at the impermeable layer, the boundary condition along AB is the

equipotential, H = 80 ft. The boundary BCDE is a streamline and EF an equipotential, H =

60 ft. The boundary LG is also a streamline which is assumed to intersect the equipotential
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Figure 3-2. Flownet solution for seepage under a weir.

lines AB and EF at -<*> and +00, respectively. For this particular case we have Ne = 9 so there

is 20/9 = 2.22 ft drop of hydraulic head between adjacent equipotential lines. Thus the

distribution of H, and therefore h = H-z, can be determined directly from the flownet solution.

By knowing, Nf = 4, the flowrate can be determined as:

Q = + K- 20 = 8.89 K

If, for example K = 0.5 ft/day, Q = 4.44 ftVday per ft of weir length.

Forchheimer is credited (Harr, 1962) with developing the flownet method and Harr

(1962) lists the following procedures for construction of a flow net. Harr suggests a paper

presented by Casagrande in 1940 will be of particular assistance to the beginner.

1. Draw the boundaries of the flow region to scale so that all equipotential lines and

streamlines that are drawn can be terminated on these boundaries.

2. Sketch lightly three or four streamlines, keeping in mind that they are only a few of

the infinite number of curves that must provide a smooth transition between the
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boundary streamlines. As an aid in the spacing of these lines, it should be noted that

the distance between adjacent streamlines increases in the direction of the larger

radius of curvature.

3. Sketch the equipotential lines, bearing in mind that they must intersect all streamlines,

including the boundary streamlines, at right angles and that the enclosed figures must

be squares.

4. Adjust the locations of the streamlines and the equipotential lines to satisfy the

requirements of step 3. This is a trial-and-error process with the amount of correction

being dependent upon the position of the initial streamlines. The speed with which

a successful flow net can be drawn is highly contingent on the experience and

judgement of the individual.

5. As a final check on the accuracy of the flow net, draw the diagonals of the squares.

These should also form smooth curves which intersect each other at right angles.

3.2. Radial Flow to a Well

Q

\\\3 \V£ \\\5

Figure 3-3. Radial flow to a well.
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The solution to this problem is well known (c.f. Kirkham, 1957) but it serves as a

good illustration of analytical solution methods for steady saturated flow. Flow occurs in an

aquifer of thickness D to a well of radius rw. The hydraulic head at a distance from the well

of r = R is assumed constant at H = hR. We assume steady state conditions so the G.P.D.E.

is the Laplace equation V2H = 0 or V2(() = 0. In cylindrical coordinates this equation may be

written as,

r dr + dr2 + r2 302 + dz2

The flow is symmetrical with no flow in the 0 direction so 32H/302 = 0.

Likewise there is no flow in the z direction and 32H/3z2 = 0. Therefore,

t dr dr2

The boundary conditions are:

1. H = h,,, r = rw

2. H = hR, r = R

Equation 3.3 may be rearranged and written as,

dr dr

Integrating both sides we obtain,

dH

1dr

dH

dr

cx

r

Cxdr

(33)
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Integrating again yields,

H = Cjln r + C2

From B.C. 1,

hw = Cxlnrw + C2

From B.C. 2,

hR = Cj In R + C2

Solving for C, and C2 we obtain,

C -*»"*
1 " ln(rJR)

In (rJR)

Then

tt An , , An ,
H = In r + h In r

In (RJrJ w In (R/rJ

where Ah = hR - hw

or

tt An i / . n f
H = , /P/ x ln (r/r-> + ^ (3.4)

In (R/r ) v ^

All terms on the right hand side of equation (3.4) are known and constant except r. Therefore

lines of constant r will be equipotential lines.

The flow rate, Q, can be determined by using Darcy's law and equation (3.4) to

evaluate the flux, qr.

qr = -K dHldr = -K
In (R/rw) r

We can determine Q by evaluating q, at any r and integrating over the flow area. Choosing r

= rw we get,
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Ah

in (jK/rw) rw

and

In

^ A 6=0

Q = f qr\r-r dA = -K—^ l-Drwd6

q = -K-AhD 2n (3.6)
in (J^r)

Note that Q is negative because flow is in the -r direction. Note also that the expression for

flow rate may be written as,

^ Q=KFAH

^ where F is a factor entirely dependent on the geometry. Notice finally that the procedure in

^ the above problem was first to determine the distribution H = H(r) from the G.P.D.E. and

^ B.C.'s. Then hydraulic gradient was evaluated from H = H(r) and the flow rate determined

by integration. This is an often used but not necessarily exclusive scheme of solving

saturated flow problems.

' Now we will determine the stream function, \\f = i|/(x,y) for the above problem. From

/m the Cauchy-Riemann conditions we know that,

^ dx dy

9y dx

where (|) = -KH

or

* - -wmh ln (r/o ■ * K
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For convenience we write,

$ = A In (r/rj - K hw

where A = -KAH/ln (R/rw).

This may also be written in the xy coordinate system as,

<j> = A [ In v7*2 + y2 - In sjxl + yl J -A" hw ^-^

Differentiating and simplifying,

x2 +y2

Then

3i|f Ax

dy xz + y

and

It
3y -^ J

tan'1

where f = f(x) is an arbitrary function of x.

Therefore,

\\f = A tan -1 (y/x) + f(x) (3.8)

We can evaluate f(x) by using the other C.R. condition,

at _ a<|)

3x dy

From (3.8)

at = Ay + #;

ax x2 + }?2 ^
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and from (3.7)

8<f> _ Ay

dy x2 + y2

Therefore

dy dx

if i£ = o , or f(x) = C
dx

Finally y = A tan ml (y/x) + C

but tan"1 (y/x) = 0

If we let \j/ = 0 when 0 = 0, C = 0 and \\f = A0. Therefore lines of constant \\f are lines

where 0 is constant; i.e. they are rays starting at the origin.

At 0 = In, \|/ = 2mA, and according to equation (2.60), Qd = \|/, - \j/2 = 2tiA (for a unit

depth)

A = -K Ah/ln(R/rw)

so Q = 2tcAD = nt(-KAh)/In(r/rw)D

Q- -
lnR/r

W

which is the same as 3.6 as expected.

3.3. Drainage to a Single Drain Tube

Drainage to a single drain tube of radius, r, located at a distance d below the surface

is illustrated in Figure 3-4. Water is ponded at a depth, t, on the surface, which is infinite

in extent, and the profile is bounded at a great (°o) depth by an impermeable layer so that all

subsurface flow exits through the drain tube. The drain tube outlets to a ditch where the

water level stands a distance S above the tube center. Kirkham (1957) presented a detailed

solution to this problem in the book, Drainage of Agricultural Lands, J. N. Luthin, ed.
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Figure 3-4.

This problem again involves saturated flow and the G.P.D.E. is V2 H = 0. The

boundary conditions are:

1. H = d + t, y = d, -oo<x< + oo

2. H = S, x2 + y2 = x\

The problem may be solved by the method of images which Kirkham notes was originally

discovered by Thomson (Lord Kelvin) in 1850.

The method of images is employed by imagining a mirror image of the semi-infinite

soil medium above the soil surface. The drain tube is considered to be a sink in an infinite

medium and the water flowing into the drain is considered to come from a source which is

the mirror image of the tube and is located a distance d above the surface. The soil surface

is then a line of symmetry between the source and sink along which the potential is constant.
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Assume a solution of the form,

H = D (In r. - In r+) + G

h = d y2 - W*2 + (y - 2<o2) + g (3.9)

This solution satisfies the Laplace equation as can be easily shown. It will also satisfy B.C. 1

ifwe set G = d +1. Then H = d +1 when y = d. From B.C. 2,

s = D [In rd - In Jxj + (yd - 2d)2] + d + t

Then

D =
d + t - s

ln

Note that D cannot be defined exactly because yd and xd can vary according to the

relationship xd + y\ = r2d . However, this variation will be small if rd is small

compared to d. If x = 0 and y = rd,

D =
t + d - s

In
2 d - rA

t + d - s

In & - 1)

And for y = 0, x = ± rd

D =
t + d - s

For y = -rd, x=0

D =
t + d - s

2d + r.
ln d-

t + d - s

ln

t + d - s

In (24 + 1)

3.11



If rd « d, rd « 2 d, and « 4d2.

Then 2d/rd » 1 and we can write an approximate expression for D as,

t + d - s
D =

In
2d

Then 3.9 may be expressed as,

H = D (In \jx2 + y2 - In V*2 + (y - 2df) + d + t

where

D =
t + d - s

, 2d
In —

(3.10)

(3.11)

Kirkham (1957) cites an exact expression for D which was developed by Smythe

(1939)

D = (d + t - sVcosh"1 (d/rd) (3.12)

We can determine the flow rate per unit length of drain pipe as follows:

Q-(qndA- / -Xf
A soil surface

The student should show that,

dR

dy y=d
iDd

x2 + d2
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and

2 Dd
d

Q = - K f 2 Dd dx = -2nKD
J x2 + 2

Q = -2nKD = - ~
In

The same result can be obtained by integrating the flux over the surface of the drain tube but

the process is somewhat more difficult.

The assumptions under which the above solution was obtained should be re-,

emphasized at this point. The assumptions are:

1. A homogeneous, isotropic soil with a constant hydraulic conductivity

2. The radius of the drain tube is small compared to its depth, i.e. rd« d

3. The drain acts as an unlined tube so that water may enter at all points along its

surface.

This last assumption is probably the most limiting so far as usefulness of the solution

is concerned. Water enters drain tubing through holes or slits in the tubing or the cracks

between tile joints. Even unlined mole channels are not usually fully permeable because of

the compressing and smearing effects of equipment used to install the moles, consideration

of these effects requires analysis of the flow in three dimensions. We will return to these

analyses which have been conducted by Schwab and Kirkham (1951) in a later section.

3A Drainage from a Ponded Surface to Parallel Drain Tubes

The solution to this problem has also been presented by Kirkham (as have so many of

the drainage problems for steady saturated flow). The solution is presented in detail in

Drainage of Agricultural Lands edited by Luthin.
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Figure 3-5.

The G.P.D.E. is again the Laplace equation, V2H = 0. By symmetry we can see that

flow is the same between any two adjacent drain tubes so that it is sufficient to solve the

region bounded by vertical planes at x = + L/2. All of the flow within this region would

flow to the drain tube at the origin. Kirkham notes that a piece of sheet metal could be

vertically inserted at x = + L/2 without changing flow patterns. The boundary conditions may

be written as follows.

1. dWdx = 0 , x = L/2 , -d<y<D

2. dWdx = 0 , x = -L/2 , -d < y < D

3. H = D + t , -L/2<x<L/2, y = D

4. 8H/8y = 0 , -L/2<x<L/2, y =-d

5. H = r , x' + y^r2

Boundary condition 5 assumes the drain flows full with no back pressure. If there is water

standing in the outlet at height s above the drain center as in section 3-3, use H = s in B.C.

#5.

As for the single tube in section 3-3 the solution may be obtained by the method of

images. The reader is referred to Kirkham (1957) for details of the solution which may be

expressed as,

H = D +t +q S In

;osh
1t(JC

7t(JC

- mL)

2h

- mL)

2h

-cos^
2h

+ C°S~2h
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cosh

cosh

where q is the average reduced flux at the drain tube and is equal to,

q = (t + D - r)/ f

where

tan-
- r)

f = 2 In
Ah

tan
jrcr

22 In

(3.15)

cosh + cos— cosh
2h 2h 2h

- cos
Tt(2D - r)

2h

i TcmL 7ir i
cosh - cos— cosh

2h 2h 2h
+ cos

- r)

2h

(3.16)

The flowrate entering a single drain turns out to be,

Q = 4;cKq (3.17)

This expression can be obtained by determining 3H/3y at y = D and integrating over x from

x = -L/2 to x = L/2, an exercise that is left to the student.

Kirkham analyzed the drainage situation in Figure 3-5 for a specific case, L = 40 ft,

r = 0.3 ft, D = 4.5 ft, and h = 6 ft. The flownet he obtained is shown below. Kirkham noted

the concentration of streamlines directly over the drain tube; he found that, for the case in

Figure 3-5, more than 95% of the total flow entered the soil from x = -10 ft to x = +10 ft and

less than 5% entered from x = +10 to +20 ft. The practical implication of this is that the

field surface should be lower just over the drains than in the surrounding area so that surface
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Figure 3-5. Flow net for equally spaced drain tubes, running just full, of diameter

0.60 ft, spacing 40 ft and depth 4.5 ft in ponded soil overlying an

impervious layer at 6 ft depth; in the left hand half of the figure the

equipotentials are in arbitrary units 0, 1, 2,...; in the right hand half the

equipotentials are given in feet of hydraulic head referred to a horizontal

plane through a drain axis, the piezometers show the head of water, 3,975

ft on the 3.974 ft equipotential; soil is water-saturated, depth of ponded

water is infinitesimal; streamlines are numbered (on one side only), 0.50,

0.40, 0.30, •••; the difference between any two streamline values gives the

fraction of the total flow of a tube entering the tube between two

streamlines. From Kirkham (1949).

water will accumulate near the drain and enter the drain tube readily. High backfill over the

tubes would not be desirable.

Kirkham also made the following observations concerning this solution:

"The flow net also shows that a large portion (about 40%) of the water

enters the drain tube through its underside, and this implies that the tube

should not be immediately next to the impervious layer if maximum flow is

desired. To check on this point, the author performed sand tank experiments

in which drain tubes (cylindrical wire screens) were placed first next to the

impervious layer (bottom of the tank) and then placed a small distance above

the impermeable layer. The flow rate was found to increase when the tubes

were raised, despite the fact that the hydraulic head difference between the soil

surface and drain tube was decreased by raising the tube. Obviously the

increase in flow will not always increase as the drain tubes are raised. Above

certain heights the gain in flow due to increased freedom of entry at the under

side of the tube will be offset by the flow Loss due to increase in hydraulic

head across the flow region. By use of Equation (IIL39) in which the drain

spacing a was taken equal to infinity (so that the summation in Equation

(HI.38) was zero) the author (Kirkham, 1941, 1948) showed theoretically that
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for drain tubes of diameter 6 inches and an impermeable layer at 6-foot depth,

the seepage Q per unit length of tube per unit time would be a maximum with

the drain tube center at about 4.5 feet. It is emphasized that this result is for

the ponded water condition. With the water table below the soil surface, the

drainage rate would be faster if the tube were lower. Even so it appears that

it would not be a good practice to have the bottom of the tube sealed, as by

having the tube half embedded in an impermeable subsoil. The problem for

a tube partially embedded in an impervious layer has been considered further

in the past paper cited.11

On this point we should note that our solution was again obtained for a completely

open drain tube. This is never the case in practice where the drain openings are slits or holes

in plastic tubing. Moreover the top one-half of the drain is sometimes covered with plastic

film to prevent soil from filling the tubing. Thus all of the flow enters through the bottom

of the drain in many field cases.

Kirkham (1957) has also developed solutions for parallel drain tubes in stratified soil.

The reader is referred to the book Drainage of Agricultural Lands, J.N. Luthin, ed. for a

complete discussion of these solutions. In the same reference Kirkham discussed solutions

obtained by Luthin and Gaskell (1950) for the interesting case where the trench that was dug

to install the tube is backfilled with surface soil which is more permeable than the underlying

layer (Figure 3-6). They considered the specific case of a single drain in a profile with a top

layer depth of 2 ft and determined the effect of flowrate of placing the drain at a 4 ft depth

and backfilling with topsoil. They found that for drainage from a ponded surface placing the

drain at the lower depth would increase the flowrate by less than 10 percent if Kj/K2 was 5

or greater. This relatively small increase is somewhat surprising in view of the fact that the

hydraulic head difference was doubled. However it should be remembered that these

solutions are based on drainage from a ponded surface. Most modern drainage systems rely

on surface drainage to remove surface water and subsurface systems to lower the water table.

The effect of a more permeable backfill on the drainage rate during water table drawdown
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Figure 3-6 Tube drainage of a layered soil where the drainage trench is backfilled

with more permeably surface material.

may be different than for ponded surfaces. This problem has also been considered by Luthin

and his co-workers and will be discussed in a later section.

3.5. Flow to Real Drains

It was noted in the above section that the flow to drain tubes predicted by the

theoretical equations is greater than would actually occur in the field because drains are never

completely open as assumed. Rather, water enters the drain tubes through cracks at the end

of tile joints, circular holes in the tube or slits in the present-day plastic tubing. The effect

of a finite number and size of openings on inflow to drains was investigated in the late

1940's by Kirkham (1949) and Schwab and Kirkham (1951). They considered various size,

number and arrangement of openings in the drain tube and analyzed the effect on drainage

flowrate from a ponded surface to a single drain and for one case (Kirkham, 1949) to parallel

drains.

For flow to a single open drain we found the flowrate to be (Section 3.3)

t + d ■ - s
Qo = 2tzKD = 2nK

, 2d (3.18)
In—

For flow to a single drain with circular perforations, Kirkham and Schwab (1951) found

(using method of images),
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(t + d - s)

C + In —

where

VC = — | 2 2 Ko (2mzpD) + 2 V [2

Ko (4^71 pw Sin%] + In (-^) - I? In (2 5m^)| (3.19)
2 pp i-i 2 J

where m is the number of row of perforations, pp = rp/a, rp = radius of perforations,

pw=rw/a|0i = angle from horizontal of a row of perforations, rw = radius of the drain, a =

distance between perforations along the tube and K^ is the Bessel function of the second kind

and zero order.

One method of treating the case for real drains is to define an effective radius of a

real drain that will permit it to be treated as completely open. This can be done using

equations (3.18) and (3.13) by substituting rd = re in equation (3.13). Bravo and Schwab

(1975) used electric analog techniques to determine flowrates under radial flow conditions

for tubes with various openings and for completely open tubes. They reported the ratios of

the flowrates for real tubes to that of a completely open tube. These ratios can be used to

define an effective radius for flow in the radial direction by using equations (3.6) where D

is 1, a unit length of drain and R is the radius of the source. The effective radius for radial

flow will be important for flow to real drains during water table drawdown as will be

discussed in Chapter 5.

3.6. Ditch Drainage of Soil with Ponded Surface Underlain by Gravel

This problem is solved in the book Advanced Soil Physics by Kirkham and Powers

(1972, pp. 99-110). It is included here as a demonstration of the method of separation of

variables for solution of steady state drainage problems. The problem is shown schematically

in Figure 3-7 below.
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Figure 3-7 Drainage from a ponded surface to a ditch of a soil underlaid by gravel.

Saturated conditions exist everywhere in the flow domain so the G.P.D.E. is the

Laplace equation, V2H = 0 and the boundary conditions may be written as,

1. H = H, , x = 0 , 0<y<H,

H = y , x = 0 , H,<y<d

2. h = d + t , 0<x<a , y = d

3. 3H =
ax

4. H = H,

x = a 0<y<d

, 0<x<a , y=O
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Let <() = H - Hj, then V2<|> = 0 and the boundary conditions may be rewritten as,

1. <b = 0 , x = 0 , 0<y<H,

<|) = y-H, , x = 0 , H, < y < d

2. <)> = d +1 - Hj , 0 < x < a , y = d

3. -^=0 , x = a , 0<y<d
dx

4. (|) = 0 , 0 < x < d , y = 0

In the method of separation of variables it is assumed that the solution is of the form,

= X Y, where X = X(x), a function of only x, and Y = Y(y), a function of y alone. Then,

=o

dx2 dy

so,

x o
dx2 dy2

-l^Y (3 20)

X dx2 Y dy2

The right side of (3.20) is a function of Y alone and the left side a function of X

alone, so if they are equal, both sides must be equal to a constant, X.

0

X dx2

so, X = Cj X + C2 (3.22)

likewise, Y = C3 y + C4 (3.23)
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But (|> = 0 when y = 0 from B.C. 4. Thus Y = 0 for y = 0; otherwise X = 0 for y = 0 and

hence all y, since X is not a function of y, and a trivial solution, ty = 0, would result.

Therefore C4 = 0.

4> = XY so dtydx = Y dX/dx = C,Y.

But 3<|)/3x = 0 at x = a, so Cj = 0. Otherwise YsO and trivial solution.

Therefore the solution obtained for X = 0 is,

♦ = C2 C3 y = C y

When y = d, (|) = d + t-H1sowe can solve for the constant C, C = (d + t - H^/d

and,

<J> = 1 y (3.24)

d

is a solution to the G.P.D.E. that fits the boundary conditions. However it does not adequately

quantify ty at all of the boundaries so (3.24) is not a complete solution.

Now consider X positive. Let X = + a2

1
X dx2

= a2 (3.25)

or

dx2
- o

which has the general solution (from ordinary differential equations) of

X = A eiax + B e-iax (3.26)

where i = yfl and A and B are constants. (3.26) may be written as,

X = A (cos ax + i sin ax) + B (cos ax - i sin ax)

or, X = D cos ax + E sin ax (3.27)

where D and E are constants, D = A + B and E = Ai - Bi. From B.C. 3, dty/dx = 0 at x =

a. But 3(j>/ax = Y dX/dx

dX/dx = Da sin ax + Ea cos ax = 0
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Therefore - Da sin oca + Ea cos oca = 0

and E = D sinaa
cos aa

The solution for X may then be written,

X = D

For Y we have

cos ax + ^LSHt sin ax\ (3.28)
cos aa

— - a2 Y = 0 (3.29)
dy2

which has the general solution

y = F eay + Ge ay

but (j) = 0 when y = 0, so Y = 0 when y = 0

and 0 = F + G, G = -F

Y = F eay - F e"ay

Y = 2 F sinh ay (3.30)

Thus a set of solutions is obtained for A, = a2 which may be written as,

((> = XY = C sinh ay cos a(a-x) (3.31)

where C and a are arbitrary constants.

Next we must consider the solutions obtained when X = -a2. Then

1 *Z - a2
X dx2 ~

and X = D3 eax + D4 eH

1 dY 2
Also - ——■ = - a2

i dy2

so Y = D5 cos ay + D6 Sin ay
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However <|> = 0 when y = 0, so Y = 0 when y = 0 and D5 = 0.

Y = D6 Sin ay (3.33)

At x = a, -^ = 0 so ^ = 0 atx = a.
dx ax

From (3.32) -^ = D. aeaX - D. ae~aX
dx 4

and X = D3 (e" + e2aa e0™) (3.34)

0 = D3ae"'-D4 ae(

so D4 = D3 e2oa

h

Let D3 = D7 e"013 where D3 and D7 are arbitrary constants. Then we can write,

X = D7 (ea(x"a) + e'a(x-a))

or X = D8 cosh a (x - a) (3.35)

Combining equations (3.33) and (3.35) we obtain another set of solutions.

$ = XY = D Cosh a (x-a) Sin ay (3.36)

A general solution may then be written by using the principle of superposition.

d + t - Hy m „ „. ,
c|> = l- y + S Cn Sinn an y Cos an (a - x)

d i

E Dm Cosh am^-fl) Sin «m

Now check the boundary conditions. A y = 0, (() = 0 + Z0 + SO = 0, so B.C. 4 is satisfied.

Differentiating term by term we obtain,
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# = S Cn an Sin «n <«-*) + E Dm am Sinh am(x-a) Sin am Y.
ox n=l m=l

So at x = a, -^E = 0 as Sin 0 = 0 and Sinh 0 = 0.
9x

Therefore B.C. 3 is satisfied. From B.C. 2, <|> = d + t - H, at y = d.

Therefore

d + t - K
1 i J C

S D^ C05A am (x-a) Sin am d= d + t

This equation will hold if

2 Cn Sinh an d Cos an (a-x) =0 (3-38)
n=l

and

2 Dm Cosh am (x-a) Sin amd = 0 (3-39)
n=l

For (3.38) to be true for all x, either ocn = 0 or Cn = 0 for all N. In either case the sum given

in (3.38) would drop out of the solution. The sum (3.39) will hold for am = m7i/d, m = 1,

2, 3, Then at y = d, (|> = d + t - Hj which satisfies B.C. #2, and the general solution is,

4) = d * V Hl y + i Dm Cosh ™± (x-a) Sin ™± Y
d m=\ d a
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Now choose Dm to fit the remaining boundary condition:

<t> = 0 , 0 < y < H] , x = 0.

<)) = Y-H1 , H^ < y < d , x = 0

This boundary condition may be written as, ty = f(y) for x = 0. Where f(y) = 0 for 0 < y <

H{ and f(y) = y - H, for H, < y < d. Then substituting into (3.40) we obtain,

d + t - H - m
f(y) = -j L y + 2 Dm Cosh -^p Sin

U m=l U

But Dm Cosh -^5^ is another set of constant, say Em. So,
a

fO0 - d + V Hx y+VEm Stn™£ y (3.41)

Let

where

gOO -/bO -(d + V Hl) y = i Em Sin 25* y
\ a ) m=i a

, - d - t
y for 0 < y < Hx

d

and

g(y) = —-^— y - Hx for Hx < y < d

The series in (3.42) will be recognized by the student as a Fourier series expansion of the

function g(y). All that remains is to use the techniques of Fourier series analysis to

determine the values of the constants Em that will make (3.42) hold for our function g(y).
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,. Jin
Multiply each side of (3.40) by Sin —=- y , which is known to be orthogonal with

a

and Sin -^- y integrate from y = 0 to d
a

Jg(y) Si in^- y • Sin *%. y dy

For

n *m, f Sin 2*£ y Sin —2- y dy = 0
o d d

The student should show this is true.

For

n - m, / Sm2 ™f dy - | ,Em | - / g(y) Sin !f y dy

and

Em =

cosh

-=— Sin —^ - — cos m n
d mn

y+ i Dm cosh 252
a m=l w

1 y+ i Dm cosh 252. (*-a) 5m
m=l

m 25*
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PROBLEMS

3.1

3.2

3.3

3.4

3.5

For example 1 attached, find Q and Ie (exit gradient) if K = 5 cm/hr and D = 25 ft.

For examples 3 and 4, find Q and Ie. Note the flownets are drawn for symmetrical

situations in both cases. Assume the upstream water depth D = 40 ft. Assume K =

1 in/hr for both cases.

Solve the same problem as given in example 2 with a 70 ft. impermeable blanket on

the upstream side.

Solve the problem in example 4 for a 60 ft. upstream blanket. Also for a 120 ft.

upstream blanket. Plot Q/K vs. L, the length of the wier.

-

A

I

T

A
s

-t

I

Find Q for a)

b)

c)

T = 20'

S = 10'

T = 20'

s = r

T = 20'

S = 0'
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Example No.2

Given: Conditions shown in sketch

Find: Flow rate, and exit gradient

If D = 20.0 ft and K = 0.5 in/hr

Solution: First Draw Flownet

- 40-r Q.

*

A//"-

Pfr
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3.6.

t/j r / a' ~. /// - /// zv/j J/tS VsS/ ,7 /// «~ Av r/.-s *

The hydraulic head at r = 300 ft. is constant at H, = 60 ft. and the water level in the well is

constant at H^ = 30 ft. (a) Determine the steady state pumping rate if the well diameter is

2rw = 6 in. (b) Plot Q vs. rw for r < 12 in. (c) For rw = 6 in. plot the flow net using the

analytical solutions obtained in class.

3.7 A single 10 cm diameter drain tube is installed in a soil with a very deep impermeable

layer. The hydraulic conductivity is 4 cm/hr and the tube is placed at a depth of 1.2 m.

The drain flows half full with no back pressure. Water is ponded on the soil surface at a 2

cm depth. Assuming no reduction in flow due to walls of the drain, find (a) the flow rate,

(b) the flow entering the surface within a lateral distance of 15 m on either side of the

drain, (c) the hydraulic head at the following coordinates (x,y) (where the (0.5,0.0),

(1.0,0.0), (2.0,0.0).

3.8 For problem 3-7, plot the flow rate versus drain diameter, D, for 5 cm < D < 30 cm.

3.9 A single 6-inch diameter drain tube is placed at a depth of 4 ft in a very deep clay loam

soil with K = 1.5 in/hr. The drain tube has circular holes equally spaced such that there

are 30 holes/ft. The holes are 0.5 in. in diameter. If water is ponded on the soil surface to

a depth of 0.5 in., find the flowrate from the drain tube. What is the equivalent diameter

of a drain tube whiph is completely open and thus has no restrictions due to the finite size

of the holes in the tube?

3.10 Repeat problem 3-9 for a 3-inch diameter drain tube.

3.11 Repeat problem 3-9 for a tube placed 8 ft. below the surface.
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3.12 The following solution was proposed for saturated flow in a soil.

0> = KH = x3/3 - y2x

Is this a solution to the governing equation? If so, find the expression for the stream

function, \|/(x,y).

3.13 Repeat 3-12 for <|> = sinh x/y + Cosh x/y.

3.14 For the ditch drainage problem shown below find H for the following x and y

coordinates.

xl 1 ml2ml5 1 1 151115

y I 0 1 0 I 0 I 0.5 I 0.5 I 1.0 I 1.0

Jl
s A*

A

Find the flowrate, Q, into the ditch.

3.15 Find H at the following x and y coordinates for the parallel tile drains given below.

The drains flow half-full. Also find the flowrate, Q.

x I 0 I 0.50 m I 1.0 I 10 I 10

y I .50 ml 0 I 0 I 0 I 0.5

t
100 an

A. o

- t - 1 an

an

K = 5 atv/hr

100 an

25 m = 7.5 cm

^B\
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1. Show

3.16 For a drain flowing full with no back pressure, show that Eq. 3-17 on page 13 reduces

to Eq. 3-13 on page 11. Note that D in Eq. 3-13 is:

while D in Eq. 3-15 and Figure 3-5 is the same as d in Figure 3-4.

3.17 For problem 3-7 plot flowrate, Q, versus drain depth as the depth increases from 0 to

3 m.

3.18 How much of the flow in problem 3-15 enters the soil surface between (a) x = + 1

m?;

(b) + 2 m?; (c) + 5 m of the drain.

3.19 For a single drain in an infinitely deep soil, plot Qx/Qt versus x/d, where Qx is the rate

of flow that enters the soil surface between x = 0 and x, and Qt is the total rate of

flow entering between x = 0 and x = oo. Note that Qt = rcKD where D= —.

In—

rd

And that Qt = 27CKD (Eq. 3-13) for flow from both sides (all x from - oo to + oo).

3.20 For problem 3-15, plot Q vs. drain depth for depths varying from 0 to 1.8 m.

3.21 Find the flowrate in problem J"' 5 for an infinite drain spacing; i.e., L —►©© in Eq. 3-16.
Compare this solution with the flowrate obtained using Eq. 3-13 (which is valid for
an infinitely deep soil, but theoretically not for this case where depth to the

impermeable layer is 1.8m).

3.22 Use Eq. 3-13 to estimate flow rate and repeat problem 3-20. Compare the plot with

the correct one obtained in Eq. 3-20.

3.23 Using the method of fragments, determine Q/K and the exit gradient for

(a) h = 10 ft, T = 30 ft.

(b) h = 10 ft, T = 60 ft.

(From Harr, 1962J

3.24 For the section shown below obtain plots of (a) the reduced quantity of seepage (Q/K)

and (b) the exit gradient. Assume 0 < A < 75 ft.
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3.25 If A = 25 ft, obtain the pressure distribution along the base of the structure.

3.26 A 100 mm diameter drain has 4 rows of holes. The holes are rectangular in cross-

section 3.0 mm wide and 20 mm long. They are spaced 50 mm apart long the length

of the tube. A single drain is bured 1.5 m deep in a deep soil having a K of 0.5

m/day. What is the flow rate?

3.36





CHAPTER 4

STEADY FLOW - THE DUPUIT-FORCHHEIMER APPROXIMATIONS

Flow situations we have considered up to now have been primarily confined

flow. That is, we have dealt with mostly saturated systems which have been carefully

defined such that all boundary conditions were known. In nature, the flow of water

in soil is frequently unconfined. In unconfined flow, at least one boundary of the

flow domain is represented by a free surface, the position of which is usually unknown,

When saturated flow is considered and Richards equation is used as the G.P.D.E.,

the terms confined and unconfined flow lose meaning because flow both above and

below the water table is considered. However it is useful to approach some of these

situations as saturated-unconfined flow problems. The Dupuit-Forchheimer (D-F)

assumptions are approximations that allow us to considerably simplify solutions to

these problems.

For many unconfined flow situations, especially for shallow soils, the direction

of flow is approximately horizontal. It follows that the equipotential lines for these

cases are approximately vertical. For these situations the following assumptions,

attributed to Dupuit (1863) and Forchheimer (1922) are useful in characterizing the

flow:

1. For situations in which the free surface has a small slope, the

streamlines may be assumed to be horizontal and the

equipotential lines vertical.
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2. Under those conditions, the hydraulic gradient is equal to the

slope of the free surface.

4.1. Flow Between Two Reservoirs

Use of the D-F assumptions is illustrated by the situation in Figure 4.1.

Because we assume the equipotential lines are vertical, the distance from the datum

to the free surface at any point, y, along the vertical equipotential. This can be seen

by considering a point at the free surface, y = h, where p = 0 and H = h. Then at

all points along the vertical equipotential H = h, the distance to the free surface.

By convention the term, h, is used for the distance to the free surface. This is

somewhat confusing because the same symbol, h, used to denote pressure head in the

previous chapters. Such inconsistencies are not uncommon in the literature however.

From Darcy's Law qx = -K dH/dx = -K dh/dx where dh/dx is the slope of the free

surface. While q is a function of x, q = q(x), it is constant for all y because dh/dx

is assumed to be the same for all values of y at any x. Therefore the flow through

a plane at any x may be expressed as,

dx

(4.1)

where Q is the flowrate per unit length of the canal. If no water enters or leaves the

region below the water table via vertical flow such as rainfall or evapotranspiration

(ET), the flowrate, Q, will be constant at all x and the shape of the water table can

be defined by integrating equation (4.1).
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X. = 0

Figure 4-1. Steady flow between canals.

2 die

(4.2)

But h = hj at x = 0 and h = h2 at x = L. Therefore,

hf = C

and

Q = £ <*? ~ hh

(4.3)

Then the equation for the free surface may be written,
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2 ,2

(4.4)

Therefore under the D-F assumptions, the water table shape will be parabolic and

the flowrate is given in equation (4.3).

4.2. Steady Flow Between Reservoirs with Vertical Losses or Additions

Consider the situation in Figure 4-2 which is identical to that shown in Figure

4-1 but with steady infiltration from rainfall at the surface at rate R.

~m

Figure 4-2.

A mass balance on a small volume of width Ax gives the following relationship.
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Therefore — = R
dx

Q|
+Ax

(4.5)

Substituting equation (4.1) gives,

dxl <±cl

or

(4.6)

d2h2 = 2fl

(4.7)

Direct integration of (4.7) subject to boundary conditions h = hj at x = 0 and h = h2

at x = L yields,

h2 = - ^ x2 +
A? - A? + - L2

x + ht

(4.8)

The position of the free surface can be evaluated from equation (4.8). Note that it

reduces to (4.4) for R = 0. The flowrate at any point can be obtained by

differentiating (4.8) and substituting into (4.1).
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dh

q = - Kh— = Rx -
dx

- hf) + R L2

21

(4.9)

Also note that (4.9) reduces to (4.3) for R = 0 as it should.

4.3 D-F Flow with Inclined Impervious Layer

Lateral flow above an inclined impermeable layer can be analyzed using the

D-F assumptions as long as the slope of the impermeable boundary is small. For the

situation shown in Figure 4-3, the D-F assumptions lead to the

y = f(x)

Figure 4-3. Flow above an inclined impermeable layer.

4.6



following expression for flux.

dx

(4.10)

and for the flowrate,

dx

(4.11)

But s = y - x tan a

So Q = -K (y - x tan a) & (4.12)
dx

dxL_ -K(y-xtana)

~dy~ Q

Assuming no gains or losses of water vertically due to rainfall, ET, or deep seepage,

the flowrate is constant for all x (conservation of mass). Then

dx _ K x tan a + K_ _ Q

dy " Q Qy =

(4.13)

This O.D.E. is of the familiar form

dx

dy

and has the general solution
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K y tan a

k tan2 a tana

(4.14)

The solution has two constants, Q and C, which must be evaluated from the

boundary* conditions or from measured y at two positions of x. That is, by knowing

two points on the free surface we can find Q and C and thus define the shape of the

surface. Equation (4.14) may be rewritten as,

Ky tan a

y - x tan a = Ce Q - —^—
K tan a

(4.15)

Where the left side is equal to the distance of the free surface above the

impermeable layer, h. If C = 0 in (4.15) we have a particular solution,

y - x tan a = ——
k tan a

(4.16)

and Q = -hoK tan a (4.17)

where h0 = y - x tan a.

The flow in this case is called uniform flow and is analogous to uniform flow in open

channels in that it occurs for long reaches where the slope of the free surface

approaches that of the impermeable layer asymptotically. The depth of flow is called
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the normal depth, ho = y - x tan a and Q = -K ho tan a. For further reference ho

is defined as ho = -Q/K tan a.

Harr (1962) discusses three cases for flow above an inclined impermeable

boundary. The three situations depend on the orientation of the impervious

boundary and the relative headwater and tailwater elevations. The three cases are

discussed briefly below.

If tan a > 0 and C > 0 the free surface will lie entirely above the normal

depth (i.e. y - x tan a > ho). This is shown in Figure 4-4a) and is called a "rising

surface". If tan a > 0 and C < 0 the free surface will lie completely below the

normal depth line and a "falling surface" results. For reverse slopes tan a < 0 and

h0 is negative. The result is a falling surface which is parabolic in shape with one

branch of the parabola asymptotically approaching the negative ho but having no

physical significance.

If two points on the free surface (xl5 y1)(x2,y2) are known, we can solve for C

and Q and thus determine both the flowrate and the position of the free surface.

From equation (4.15),

K yx tan o

y, - x. tan a + ——— = Ce Q
1 l Ktana

(4.18)

but Q = -K ho tan a

Therefore K tan a/Q = -l/ho
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so - Xj tan a - ho =

and y2 - x2 tan a - h0 = Ce

Then C = (y, - jtj tan a -

y2 - x2 tan a - /t0 = (yt - xx tan a -

y, - x, tan a - hn
Finally, y2- yt = ^ In -1 1 -2 (4.19)

y2 - j:2 tan a - ho

Recall that ho is the normal depth and is defined such that Q = -Kho tan a. Since

yx and y2 are known, ho can be obtained from (4.19) by trial and error.

The above solutions can be simplified somewhat by substituting

h = y - x tan a into (4.19). Then,

(4.20)

Harr (1962) described methods originally presented by Pavlovsky to obtain graphical

solutions for equation (4.20). The methods given in the following example represent

a straightforward use of graphical procedures to solve equation (4.20).
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Figure 4-4.

C.
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4.4 Flow Over an Inclined Impervious Layer - An Example

A drain field for a septic tank system is to be installed on a sloping soil which

has a uniform depth to an impermeable layer of 1.0 m (Figure 4-5). The soil drains

to a road bed cut with hx = 0.4 m which is also the seasonal high water table (h2 =

Figure 4-5. Effect of septic drain field on water table for a sloping soil. Broken

curve represents seasonal high water table before septic drain field -

solid curve after installation.

0.4 m) as indicated by mottling of the soil profile. The length of the drain is to be

selected so that the water table does not rise closer than 0.3 m from the surface

(h3 = 0.7 m). If K = 1 m/d, S = 5% and L = 30 m.

Find:

a) Flowrate before a seepage field is installed (at seasonal high water

table).

b) Flowrate per unit length of seepage field when h3 = 0.7 m.

c) Effect of L on flowrate from seepage field.
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Solution:

Note that tan a = S and for small slopes, x2 - xx = L, so that equation (4.20) may be

written

h2 - hx + SL - ho In A—^

a) Before the seepage field is installed hx = h2 = 0.4 m = h0 so Q = -K h0 S = -lm/d

(0.4m)(.05) = .02 m3/m day.

b) For h3 = 0.7 m we need to solve (4.21) with h3 rather than h2 to obtain h0. Defining

f(h0) = h0 In ((hrh0)/h2 - ho)) we can plot f(h0) versus h0 as shown in Figure 4-6. Then

for f(h0) = h3 - hx + SL = 0.7 - 0.4 + 0.05 x 30 = 1.8 we get ho = 0.73. Therefore qt =

q + qs = -Kh0 S. But q = -Kh2S, so qs = -KS (h0 - h2) = 0.017 mVmd

In this case a three bedroom house which produces 1.14 m3/d (300 gpd) would require

a single trench 67 m long (1.14/0.017 = 67). This length would not be practical for most

situations so alternatives to increase the seepage rate from the septic field should be

investigated. One alternative would be to install an interceptor drain upslope of the area so

that the only continuous flow through the profile is qs from the seepage field. Then the

maximum flowrate is qt = qs = -KS h0 = 0.036 m3/md for the above case and a 31 m trench

would be required. Another means of increasing the lateral drainage rate is to install a drain

downstream of the seepage field which would effectively decrease the length of the flow

path, L. When this is
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done, flow rates can be calculated using the same procedures as given in examples

1 and 2 (as long as L/h2 is large) for both flat and sloping soils. A drainage outlet

would be required to use this means of increasing flow rates and certain minimum

distances from the seepage field should be maintained to insure adequate treatment

of the waste water. However these alternative may be attractive for some sites where

on-site waste disposal would not otherwise be feasible.

Solutions for the reduced flow rate from a drain field, qs/KS, are plotted for

profile depths of 1 and 3 m in Figures 4-7 and 4-8, respectively. In both cases, the

maximum water table depth (b-h3) was assumed to 0.3 m from the surface and Ha

values corresponding to outlet depths (b-h^ of 0.8, 0.6 and 0.4 m were considered.

For convenience in plotting, the natural seasonal high water table elevation was

assumed equal to hj (i.e., h2 = hx) so that qg/KS = ho - hx in Figures 4-7 and 4-8.

The plots can be used for the case considered to determine permissible design flow

rates for any combination of K, S and L. As expected, maximum flow rates will

increase with profile depth and decrease with natural water table elevation (Figures

4-7 and 4-8).

Note that for large values of SL the reduced flow rate tends towards a

constant value which is equal to h3 - h2. This comes about because qs/KS = ho - h2,

and ho approaches h3 for large values of SL. The practical significance of this result

is that, for large SL values, the solution is relatively insensitive to L and hence the

exact location and description of the outlet is not critical. This is shown in Figure

4-9 where the design flow rate for the example considered above is plotted versus L
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for three slopes. In the case of 5% slope the flow rate doesn't decrease with L for

L values greater than 50 m. However this critical length is large for smaller slopes

as shown for S = 1% where c^ continues to decrease with increasing L up to 120 m.

4.5. Steady to Drains

Many of the methods used to predict effects of drain depth and spacing on

water table position and drainage rates are based on steady state conditions. Most

of the approaches use the Dupuit-Forchheimer assumptions. Consider the case of

parallel drainage ditches that penetrate to an impermeable layer (Figure 4.10). The

ditches are distance L apart and the water elevation in the ditches is d.

I M M 1

W W I'* JC "* "* W Tib

Figure 4.10. Steady drainage to parallel ditches.

Starting with equation (4.5) we have

dx

where

(4.5)

dx

4.15



This is a special case of the problem shown in Figure 4.2 with h: = h2 = d. Thus,

d2h2 = _2J?

dx2 " ' K

(4.7)

Integrating with respect to x given

dhf _ _2Rx + c

dx #

From symmetry Q(x) = 0 at x = L/2

= -^ /r — = 0 arx
die

From Equation (4.21), 2h ^ = -^x +
ax K

0
dx K 2

1 K

dhf = 2R + RL

dx KX + K

Integrating again yields
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2 R 7 RL ~,

£ K 2

The constant of integration C2 = d2 is determined by applying the boundary condition h = d

at x = 0. Then the water table position as a function of x may be written as,

2 R 2 RL
= -—jcz + —x a

K K

(4.22)

The maximum water table elevation, h = h^, occurs at x = L/2.

h2 = -*iii + ^! + d2
m K 4 IK

m 4/5T

— = h2m - d2
4K

Rl2 = (hm - d)(hm + rf)

Note that hm - d = m so that hm = d + m and hm + d = 2d + m. Substituting yield the

following relationship,

o _ 4Km(2d + m)

L2

(4.23)
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or

2 = 4Km(2d + m)

R

(4.24)

This expression relates the ditch spacing, L, to the water table elevation midway between the

drains and the steady rainfall rate, R. The difference in hydraulic head driving lateral flow

to the drains is m = hm - d, and the flow rate is directly dependent on the hydraulic

conductivity, K. Equations (4.23) and (4.24) are attributed to Donnan (1946), but may be

considered special cases of more general equations derived by Hooghoudt (1940). Equation

(4.23) is often used to express the drainage rate per unit area, q, as a function of water table

elevations and the drainage system design parameters. It is applied for both steady state and

quasi-steady state (slowly changing) conditions. The assumption implicitly in its use for

conditions in which rainfall is not steady (and in fact may be zero for a period of time), is

that the drainage flux, q, for a given water table elevation m is equal to the steady rainfall

rate that would cause the midpoint water table to be a distance m above the ditch water level.

= R = 4Km(2d + m)

q = L2

This equation may also be expressed as,
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= 4Km2 + SKmd

q" L2

(4.25)

or,

AKm2 + %Kmd

(4.26)

Note that if d = 0, q = 4Km2/L2, so the first term in equation (4.25) represents the

flow above the horizontal plane defined by the elevation of the water in the ditch.

Likewise, if d> > >m, most of the flow occurs below the plane of the ditch

water level and

q « 8Kmd/L2

Then equation (4.25) may be written as,

4Km2 SKmd

q" L2 L2

where the first term on the right side represents the flow contributions above the

ditch water level and the second term represents the flow below the plane of the

ditch water elevation.

To this point we have assumed that the profile is homogeneous and isotropic.

If the profile is layered with K = Kx above the ditch water level and K = K2 below

the ditch water level, we may written equation (4.27) as
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q =

ZK2md

Next, consider ditches that do not penetrate to the impermeable layer, and drain

tubes buried a distance d above the impermeable layer (Figures 4.11 and 4.12)

i i i I i I

m

Figure 4.11. Drainage ditches that do not penetrate to the impermeable layer.

Figure 4.12. Parallel drain tubes buried above the impermeable layer.
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It should be obvious by inspection that the steady recharge rate, R, required to maintain the

midpoint water table at distance, m, above the drain or ditch water level would be less in

Figure 4.12 than in Figure 4.11 and less in Figure 4.11 than in Figure 4.10. In other words

the steady drainage rate for a given m value would generally be less for drain tubes (Figure

4.12) than for open ditches at the same depth (Figure 4.11) than for open ditches that

penetrate to the impermeable layer (Figure 4.10). The reason for the reduced flow rate is that

the streamlines are not horizontal as they approach the drain in Figure 4.11 and 4.12. The

streamlines converge close to the drain resulting in increased head losses in that region.

In order to account for head losses due to convergence Hooghoudt suggested

that the flow calculated for the lower zone (8K2md/L2) be reduced by replacing

depth to the impermeable layer, d, with an equivalent depth, de. Then equation

(4.27) may be written as,

4Kxm2 + SK2dem

q = T>

(4.28)

This assumes that flow in the upper zone is not affected by convergence, an

assumption that would be valid as long as the water table does not stand over the

drain. This assumption is not always valid, however, and the methods must be

modified where there are high head losses near the drain.

Hooghoudt determine de by assuming horizontal flow in the region away from

the drains and radial flow close to the drains. Numerous plots of de versus d for
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ranges of drain spacings have been published (e.g. van Schilfgaarde, 1974). A

disadvantage of this approach is that a new set of curves is required for each drain

radius. The equation from which the charts were derived was obtained by

Hooghoudt for flow below the drains as,

(4.29)

where

(1 - dx/Ti2 1 d
8 -i 1—^- + — in + ftdyL) (8*30)

H ZdL n ryj2

where f(d,L) is generally small and may be neglected.

Then de is defined by

K2m SK2de m

q " TfI T1

or
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84. _J_

L Fa

8Z>2L * /V2

dL

(4.30)

L2 - fidL

L2

+ 2d2

d

d

L

8 . d

(4.31)

1 + *
L

8 . d
— ln-

* rsjl

(4.32)

d. =
d

£ I ^ _ 3.7 + 2±
L ht r L

(4.33)

Moody (1967) analyzed Hooghoudt's methods and suggested that the equivalent

depth could be expressed as,
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(4.34)

where

a = 3.55 - 1.6 - h
L \L)

(4.35)

Moody noted that a may be approximated as 3.4 for most purposes.

L

For — < 3 , Moody suggested that

Ln

~ - 1.15

(4.36)

Note that equation (4.33) is close to equation (4.34). If d/L = 0.15 and f(d,L) is neglected,

equation (4.33) reduces to equation (4.34) with a = 3.4

Example 1.

Drains are to be placed 1.0 m deep in a soil with depth to the impermeable

layer of 3.0m. The drains are to be spaced such that the water table will not be

closer to the surface than 30cm when the steady infiltration or recharge rate is 1.0 cm/day. The
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drain radius is 5 cm and the hydraulic conductivity is 4 cm/hr. What is the drain

spacing?

Solution:

From the Hooghoudt equation

q =
4Km2 + SK mde

L2

q = DDR, the design drainage rate = 1 cm/d

m

1.

L = s/AKm2 + SK mde

DDR

0.7 m, K = 0.96 m/d, DDR = 0.01 m/d

First assume de = d = 2.0 m

L =
\

4(0.96)(0.7)2 + 8(0,96)(0.7)2.0

.01 .

L = 35.5 m
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2. Calculate
d. =

1 + d
L

d

00|
In r

-3.4

Ad =

35.5

1 AC=1.49m

.05

3. Recalculate L based on new de

L = 31.4 m

4. Recalculate de and continue steps 3 and 4 until L converges to a constant

value

de = 1.44, recalculate L;

L = 31.0, recalculate de;

de = 1.44, the same as assumed so

L =^31.0 m

Example 2. Solve example 1 if the effective radius of the drain tube is 1.5 cm.

Solution:

1. Start with an assumed drain spacing of 31 m and use r = re = 1.5 cm in

Moody's equation to calculate de
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ifl m^ _ 3.4]

ad
e

1 + 111 ta_L. - 3.4]
31 (n 0.015 J

de = 1.26 m

2. Solve for L using the Hooghoudt equation.

= 4(0.96)(0.7)2 + 8(0.96)(0.7)<fe

N .01 .01

L = 29.4 m

3. Recalculate de and continue until convergence is obtained.

de = 1.24 m

L = 29.2 m

de = 1.23 m

L = 29.2 m

so the drain spacing would be 29 m for real drains versus 31 m for an ideal

10 cm drain.
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Example 3. Solve example 1 with a real drain for the case where K = 4 cm/hr for

the soil above the drain (< 1 m deep) and K = 1 cm/hr for depths > 1 m.

1. Assume de = 1.3 m and solve for L from the Hooghoudt equation with

Kt = 0.96 m/d and K2 = 0.24 m/d.

L =
\

4(0.96)(0.7)2 + 8(0.24)(0.7)(1.3)

0.01 0.01

L = 19 m

2. Recalculate de and L until get convergence.

2.0

2.0

19
1 In 2-°
it .015

- 3.4

de = 1.02

L = 18 m; recalculate de;

de = 1.0 m; recalculate L;

L = 18 m
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Example 4. The profile is layered as shown below.

Q-/.Off)

2.0m

Solution: Determine equivalent K values and use the Hooghoudt equation.

%K2mde

where Kx and K2 are the effective K above and below the drain, respectively.

In this case we have a problem for the soil layers beneath the drain. If the

drain spacing is 20 to 30 m, de would be about 1.0 to 1.25 m (examples 2 and 3).

However K= 4cm/hr for the soil in the vinicity of the drain (from 0.5m above to 1,0m below the drain).

we use K2 = 4 cm/hr, the layers with lower K values (between depths of 2.0 m and

3.0 m) would not be represented.

We solve this by determining an effective depth of the profile below the drain

that has the same transmissivity as the actual profile but the K value of the soil

around the drain.
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= K2D2 + K3D3 + K4D4 ^

0.04 D = 0.04(1.0) + 0.02(0.5) + 0.01(0.5) ^

D = 1.375 m ^

That is the transmissivity of the region below the drain is the same as a uniform soil

1.375 m thick with a K of 0.04 m/hr. * ^ ^

The equivalent K of the region above the drain is

0.7Ke = 0.5 x 0.04 + 0.2 x 0.1 ^

Ke = 0.057 m/hr = 1.37 m/d ^

Then treat the profile as a two-layered system with K, = 0.057 m/hr in top layer ^

1.0 m thick and K2 = 0.04 m/hr in the bottom layer which has an equivalent ^

thickness of 1.375 m. ^

Then solve as before: ^

1. Assume L = 25 m

1.375

L =

de =

L =

27.9

0.98

28.2

m;

m

m

V.

T

recalculate

U(i

N

1.375

25

de =

•37)(.7)

J
L

0.95

2

1.375 _ <i a

.015

m

8(.96)(.7)(0.95)
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Example 5. What is the drainage rate from the layered profile shown below.

Solution:

fa » Icm/h-

1. q =
AKxmz + SK2dem

2. In this case Kt = 1 cm/hr. The question is how to define K2 and de. The

best method is to first determine an effective depth, D, below the drain that

would have the transmissivity of the profile if K = 1 cm/hr, the conductivity

around the drain.

= 1^(100 cm) + Kc(50 cm) + Kd(50 cm)

D =
50Kc + 50Kd

E

D = 100 1 ^ 50 (2) * 50 (100) = 52QQcm

1
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3. Now determine de for d = 5200 cm and L = 2500 cm from the Moody

equation for — < 3
d

j Lit
d_ =

8(ln ^ - 1.15) 8 fln^- - l.

= 4 x 1 cm/hr(50cm)2 + 8x1 cm/hr (194)(50) cm2

2500cm2

q = 0.0156 cm/hr = 0.375 cm/dav

4. A common error would be to define

K - lOOd) - 50(2) + 50(100) =

200

and

d = — —=135cm
e

200 (S , 200

2500

Then

- 3.4
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4(l)(50)2 + 8(26)(135)(50)

(2500)2
= 0.226

cm

hr

= 5.43 cm/day. A factor of 14.5 difference.

4.6. Steady Flow During Subirrigation

The flow domain during steady subirrigation is shown in Figure 4.13.

f t \ \ »

h.

f

m JUe ilk I/R us lie as /*?

Figure 4.13

The solution is the same as equation (4.22) with \ substituted for d.

K K

Note that R is the steady evapotranspiration rate in this case and it is negative.

At x = L/2, h = hm

hi = -— ~ rl2 2
^ " K 4 + IF '

2 . 2

Kft
R L2
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R L2

m 1 m + l ~ ~K~4

Keeping the same notation as for drainage m = hm - \ is negative for subirrigation.

Then hx + m = hm, so hm + hx = 2\ + m.

m(2hx + m) = - —
V x J K 2

and

q =

x + m)

This is the same form as the Hooghoudt or Donnan equation (equation (4.23)) with

hj substituted for d. Remember that both m and R are negative for subirrigation.

When the drains don't penetrate to the impermeable layer or when drain

tubes are used (Figure 4.14) \ = d + yx and we would substitute de for d to account

for convergence near the drains.

t ttttrtttrr

Figure 4.14. Steady subirrigation with drain tubes
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AKmilh. + m)
Then q = where hx = yx + de

At what value of hm would q be maximum? That is what value of hm would

sustain the highest ET rate?

This can be determined by differentiating the above equation with respect to

m;

d %Km + 8AT/r1

dm L2

The maximum absolute value of q will occur when m = -hj = - (yx + de). This

means that m is the negative value of the distance from the water level over the

drains (normally assumed to be the pressure head in the drain in the case of tube

drains) to depth de below the drain. Ernst (1975) observed that the maximum lateral

hydraulic gradient, and hence the maximum lateral flowrates, would occur when the

water table at the midpoint was at the actual depth of the impermeable layer, rather

than at the effective depth of the impermeable layer. Thus the above equation

underestimates the magnitude of q for deep midpoint water tables. Ernst (1975)

proposed the following equation to correct this problem.

*_L + SK^m

q =

where Hx = yx + d and hx = yx + de.
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Example:

Drains with an effective radius of 2.0 cm are to be buried 50 m apart at a

depth of 1 m. What will be the steady subirrigation rate when the water level over

the drains is 0.4 m below the surface and midway between the drains the water table

is 0.9 below the surface? The hydraulic conductivity is 10 cm/hr and depth to the

impermeable layer is 4.0 m below the surface.

Solution: m = -50 cm, L = 50 m, K = 10 cm/hr

cL =
Find d,; + d_Je» 1 In ± - 3.4

d = 300 cm, rg = 2 cm, yx = 100 - 40 = 60 cm

de = 192 cm

Then \ = yx + de = 60 + 192 = 252 cm

Ha = 60 + 300 = 360 cm

m = - 50 cm

4 • 10 cm/hr • — • (-50 cm)2 + 8-10 cm/hr • 252 • (-50)
= 360 [

q (5000 cm)2

q = -0.0375 cm/hr

q = -0.9 cm/day

If the correction factor h1/H1 had not been applied the result would have been,
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q = - 0.036 cm/hr = -0.87 cm/day.

In this example the difference is negligible, but this will not always be the case.

4.7 Nondimensional Form of Equation for Subirrigation

r

dx

dx

R > 0 rainfall

R < OET

dx I dx

let I = x/L

H = h/h,

Then dx = Ld£

dx I dx
= -RIK

0 < H < 1
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-1 = I A
dx L di

— — \H
L2 d\

J. fa *) .-
Kh]

Boundary conditions:

1. H = 1, £ = 0

2.

or H = 1, I = 1

d (l
2 dl
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2H £?? = -2u 5+ C

Hf=O

0 = -2\l - + C
2

C = +/*

H2 = tU $2 + /« 5 + C2

H = 1, 5 =0

, C, = 1

H2 = n I2 + n I + 1

Thus the nondimensional form of the solution is an elliptical equation as expected.

What is the value of^a when H = 0at£= — ? This will be the^a value

associated with the maximum ET rate for a given h^ value. Substituting I = — and

H = 0 in the above equation gives,
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I,..,

-4 ..*£
Kh\

so the largest absolute value of ET is

R =

That is, the largest ET that can be sustained on a steady state basis is given by the

above equation. Note that no correction has been made for convergence near the

drains.
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HOMEWORK PROBLEMS BAE 771

4.1.

4.2.

4.3.

(Harr, 2). Two observation wells are located as shown in the figure below.

The observed elevations of the free surface above the horizontal impervious

boundary are h2 = 40.3 ft and h2 = 35.5 ft. The hydraulic conductivity is 4

ft/day. Determine (a) the elevation of the free surface at section M; (b) the

quantity of seepage per 10 ft of section.

(Harr, 5). The section shown below reaches a steady state for flow under a uniform

infiltration of e. Find the ratio e/K and construct the free surface for the section if

the water level above the impervious base in rivers A and B is 20 ft and the elevation

of the water surface in the observation well is 21 ft.

ULLLU

B

OJCtl

(Harr, 6). In the case of uniform infiltration onto a free surface between two

rivers, demonstrate that the water divide is closer to the river with the higher

water level.
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4.4. (Harr, 7). Placing the origin of coordinates at a = L/2 as shown in the figure

below and assuming h = b, demonstrate that the equation for the free

surface is the ellipse lr/b2 + x2/a2 = 1.

r
o

JJ_jLU

o

4.5. (Harr, 10). The section shown below consists of a sand with K of 14.0 ft/day.

The water level at the river is at an elevation of 128.8 ft., 14 ft above an

inclined layer of relatively impervious clay. The water level at the observation

well is at 140.0 ft, 32 ft above the clay layer. Determine (a) the normal depth;

(b) the discharge per 10 ft of section; and (c) construct the free surface

between the river and the well.

/coo4

4.6. (Harr, 11). Repeat problem 4.5 with K = 4.4 ft/day.
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4.7. Obtain the free surface for the well in the figure below by Dupuit's theory.

How much water is pumped?

f *

1

F / -,
lorn I

j

/

, /
/f$ //& //£ //& //£ 4VA

AieV \ r-7

\
«■

4

\

10*

f

4.8.

t t t f t r f
//A

10'

m

The above sketch represents a water table control system in a soil with K =

2 in/hr. Plot the water table profile. Generalize your solution so that you

won't have to find a new solution for each K, L, h, etc.
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4.9.

COA&.I

A

w to—w~

5CXG'

HA'

///$

a) For a rainfall rate of 1 in/day find the steady state FLOWRATE

INTO THE RIVER in ft3/nr ft.

b) Find the steady state flowrate into (or out of) the canal in ft3/hr ft.

c) Derive the equation for the free surface.

d) Find the distance of the free surface from the impermeable layer at x

= 2500 ft.

e) What is the smaller value of R at which water seepage FROM the

canal will be zero?
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4.10. In the attached figure, hx = 0.2 m, h2 = 0.5 m and h3 = 0.8 m. If the distance

from drain to the outlet is 20 m, what is the flowrate under natural conditions

(when h2 = 0.5 m)? What is the total flowrate when the seepage field is

installed'and the water table is raised h3 = 0.8 m? What is the seepage rate
from the drain under those conditions? Ks = 2 cm/hr, s = 0.08.

4.11. 2 j = 0.4 m and h3 = 0.7 m in problem 4.10, develop a plot of c^/KS

versus SL where qs is the flowrate from the drain field.

If h2 =
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\

2 -

1 -

10.73" | |

.

1 1

0.7 0.8 0.9 1.0 I.I 1.2

(m)

Figure 4-6. Graphical solution for f(h) = h0 In ((h,-ho)/(h2-ho)) VERSUS ho for

h: = 0.4 and h2 = 0.7 m.
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CAPACITY PLOTS - SLOPING SLAB

b = 1.0 m

1.0 2.0 3.0 4.0 5.0

SL

Figure 4-7. Capacity plots for seepage field on a sloping soil with aim profile

depth.
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CAPACITY PLOTS - SLOPING SLAB

if)

4 -

3 ■

2 -

I -

1

1
b =

V

1

i i

3.0 m

2.7 m

1 1

1 1

■ — 2

2

2

h. "
.2 m

.4 m

.6 m

1.0 2.0 3.0

SL

4.0 5.0

Figure 4-8. Capacity plots for a seepage field on a sloping soil with a 3 m profile

depth.
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FLOWRATE vs. SLOPE LENGTH

.025

Figure 4-9. Seepage rate versus length to the drainage outlet for a 1 m profile

depth with a seasonal high water table of 0.6 m deep.
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4.12. A sandy loam soil with K = 10 cm/hr has an impermeable layer 2 m from the ^

surface. Parallel ditches are to be cut all the way to the impermeable layer ^

but will have water standing in them at a depth of 0.4 m; i.e. the water level

in the ditches will be 1.6 m from the surface. What ditch spacing will be

needed to keep the water table elevation midway between the ditches 0.2 m ^

from the surface for a steady rainfall intensity of 1.0 cm/day? ^

/^

4.13. Solve problem 4.12 if the soil is layered with the top 1.6 m having K = 5

cm/hr and the bottom 0.4 m having K = 10 cm/hr. ^

4.14. Repeat problem 4.12 if the soil is layered with the top 1.0 m having K = 5 ^

cm/hr and the bottom 1.0 m having K = 10 cm/hr.

4.15. A sandy loam with K = 6 cm/hr has an impermeable layer at a depth of 5 m. ^

Drain tubes with a diameter of 15 cm are to be placed at a depth of 1.0 m. ^

If the drain tubes are completely open with the water level at the midpoint

in the drain, what drain spacing would be needed to keep the water table

midway between the drains 0.3 m from the surface for a drainage coefficient ^

of 0.75 cm/day? ^

4.16. If the tube drains in problem 4.15 are replaced with open ditches, 0.60 m wide

and 1.2 m deep (the water level in the ditch is 1.0 m from the surface), what ^

would the drain spacing need to be to accomplish the same results? ^

4.17. The situation shown below is set up in the lab to measure flow from a

cylindrical source to a drain tube. When the drain tube was completely open, ^
i.e. permeable sidewalls, the flow as 10 gal/min. When a conventional 5 inch

tube, with wall openings equivalent to 2% of the total wall area, was placed

in the setup, the flow rate was 6 gal/min. What is the effective radius of the

conventional tube.
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4.18. If the conventional drain tube in problem 4.17 is substituted for the tube in

problem 4.15, what drain spacing would be required?

4.19. Rework problem 4.18 for layered soils.

a. K = 6 cm/hr for depths less than 1 m

K = 3 cm/hr for depths greater than 1 m

b. K = 6 cm/hr for depths less than 1 m

K = 12 cm/hr for depths greater than 1 m but less than 1.5 m

K = 6 cm/hr for depths greater than 1.5 m

c. K = 6 cm/hr for depths less than 0.6 m

K = 3 cm/hr for depths greater than 0.6 m

d. K = 6 cm/hr for depths less than 1 m

K = 3 cm/hr for depths greater than 1 m but less than 1.5 m

K = 6 cm/hr for depths greater than 1.5 m

4.20. A loamy sand soil has a hydraulic conductivity of 20 cm/hr. Conventional 4-

inch drains, with an effective radius of 5.1 mm, are placed 1 m deep to be

used for both drainage and subirrigation. Depth of soil to the impermeable

layer is 6.0 m. If the head at the drains is to be maintained at a level 0.6 m

below the surface (0.4 m above the drain center), what drain spacing will be

needed to sustain a midpoint water table depth of 1.0 m for a steady ET of

5 mm/day.

4.21. Using the drain spacing obtained and other conditions given in problem 4.20,

find the maximum ET rate that could be sustained for the following midpoint

water table depths, Zm. Assume that the roots are deep so that the system is

not limited by lack of upward water movement.

a.

b.

c.

d.

e.

f.

g-

h.

zm

zm

zm

zm

zm

zm

zm

zm

= 0.5 m

= 1.0 m

= 1.5 m

= 2.0 m

= 3.0 m

= 4.0 m

= 5.0 m

= 6.0 m
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CHAPTERS 

UNSTEADY FLOW - THE D-F ASSUMPTIONS 

In the previous chapter we used the D-F assumptions to characterize steady flow 

situations.  While it is sometimes appropriate to assume 
.
steady flow for the design of water 

management systems, steady state conditions are seldom found in nature. This is particularly 

true in humid regions where water table positions near the surface are continually changing 

both with respect to time and lateral position. In this chapter we will discuss methods for 

characterizing the movement and storage of water in soil and transient conditions. Emphasis 

is placed on drainage situations but the same procedures may be used for other subsurface 

water movement problems. 

5 . 1 .  The Govemin� Eguations 

Consider the drainage problem shown in Figure 5- 1 .  The water table is initially 

horizontal at a distance, h0, above the impermeable layer. At time, t = 0, the water level in 

the drains is dropped to a distance d above the impermeable layer and drainage begins. 

----

d 

L 

-- ------

Figure 5-1 .  
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The most complete way of characterizing water movement for this case would be to use the 

two-dimensional Richards equation for saturated and unsaturated flow as the G.P.D.E. 

However the use of this equation requires definition of the soil water characteristic h(8) and 

the hydraulic conductivity function, K(8). K(8) is hard to determine, especially a field 

effective relationship, because of field variation and the inexact methods for determining 

K(8) in situ. An alternative approach is to simplify the treatment of subsurface flow by 

making the D-F assumption and expanding the development of equation (4.6) to include 

nonsteady conditions. 

- - t.+IC 
-

-

Figure 5-2. 

Consider a mass balance on the elemental volume shown in Figure 5-2. The water table 

elevation changes by .6.h during time .6.t. If the drainable porosity is f, the water volume 

below the water table gains or loses (depending on whether the water table rises or falls) a 

volume of water equal to f .6.h A during .6.t where A is the surface area of the elemental 

volume. Then a mass balance may be written as 

f �h A= Qlx �t - Qlx+L\x�t + R A �t 
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For a unit width, A = ax. So dividing through by A at gives 

Then for ax ... 0 and at .... 0 we have 

fah 
= 

aQ + R 
at ax 

(5.1) 

Where Q is the total flowrate in the x direction and may be written (4.1) as, Q = -Kh dh/dx. 

Substituting into (5 . 1 )  yields, 

(5.2) 

which is called the Boussinesq equation for unsteady flow. 

Note that the use of the Boussinesq equation accepts the D-F assumptions and further 

assumes that water in the amount of f dh is released immediately from the unsaturated zone 

as the water table falls. Errors caused by these approximations will depend on the soils and 

boundary conditions involved; i.e. the magnitude of the errors will be case dependent. 

However solutions to (5.2) are much easier to obtain than for the more rigorous Richards 

equation for two-dimensional, saturated-unsaturated flow. 

Comparison of the two alternatives were made by Skaggs and Tang (1976) in an 

ASCE article "Saturated and Unsaturated Flow to Parallel Drains" (ASCE J. Irr. & Drain 

Div. ,  Vol. 102(IR2):221-237 errata: Vol . 102(IR3):399-402). The results indicate that, at 
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least for many cases, there is good agreement between the predictions of these two models. 

Since solutions to the Boussinesq equation are much easier to obtain and the soil properties 

required easier to define, this approach is presently favored for field application. 

Then following the Boussinesq approach the G.P.D.E. is equation (5 .2), and the 

boundary conditions may be written as 

h = d  

ah 
= 0 

ax 

x = O  

X = 
L 
2 

t = O 

t > O 

t 2:0 

5 .2 .  Solutions to Linear Form of Boussinesg Equation 

(5.3a) 

(5.3b) 

(5.3c) 

There have been numerous methods used to solve equation (5 . 1 )  subject to boundary 

conditions (5.2). Some of these are referred to in the article "Drawdown Solutions for 

Simultaneous Drainage and ET" (ASCE, J. Irr. & Drain, Vol. 101 (1R4):279-297, 1975) 

which you have been asked to review. The first solution for draw down was presented by 

Glover, (Dunn, 1954) who used the method of separation of variables for the case where R 

= 0. If we assume that the total variation of h is small when compared to L we may write a 

first approximation of (5 .2) as, 

f
ah = Kj_ (/i ah ) 
at ax ax 

5.4 
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where fi is the mean value of h. 

Then equation (5.4) is a linear equation and may be solved by separation of variables. 

First the G.P.D.E. and boundary conditions are written as follows: 

ah 
ax 

h==d 

= 0 

t == 0 

t�O x==U2 

t > O x==O 

In order to simplify the boundary conditions let g == h - d and ex == Kh /f. Then 

ag a2g = a -

at ax2 

g==h0-d t == 0 0 5 x 5 L 

agtax == o t�O X ==U2 

g==O t>O x==O 

(5.5) 

(5.6a) 

(5.6b) 

(5.6c) 

(5.7) 

(5.8a) 

(5.8b) 

(5.8c) 

Let us assume that the solution to (5.7) subject to B.C.S .  (5. 8) may be written in the form: 

g == X(x) T(t) (5.9) 

where X is a function of x alone and T is a function of t alone. 
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Then 
ag = XdT 
at dt 

a 2g 
= Td2X 

and 
ax 2 dx2 

Substituting into (5.6) yields 

1 dT 
aT dt 

Since the left side of (5 .9) is a function of t alone and the right side is a function of x alone 

and they are equal, both sides must be equal to a constant, say-A.. 

aT dt X dx2 = -A. 

The constant A. may be A. > 0, A. < 0, or A. =: 0 and each case should be evaluated. First try A. 

= 0 . 

and X = C1 x + C2• But at x = 0, g = 0 and therefore X = 0 at x = 0 (otherwise T = 0 at x = 
0 and since T is not a function of x it would have to be 0 for all values of x, hence a trivial 

solution). So C2 = 0. aglax = TdX/dx = 0 at x = L/2. :. dX/dx = C1 = 0. Therefore X = 0 
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when A= 0 and a trivial solution results. So A= 0 does not give a useful solution. 

Next try A = -Ji; i.e . ,  A < 0. 

and X =  Aep.x + Be-p.x 

Again at x = 0, g = 0, so X= 0 = A+ B. Therefore B =-A and 

At X = L/2, agtax = 0, so dX/dx = 0 at X = L/2 

dX = p,A (e p.U2 + e -p.U2) = O 
dx 

But this would require either J.L = 0, which we have already examined above, 

d 2X 
or A= 0, which gives a trivial solution. Therefore A> 0. Then + J.L2X = 0 

dx 2 

which has the general solution: 

At X = 0, g = 0, so X = 0 

O=A+O 
and X = B sin p,x 

X = A cos p,x + B sin p,x 

dX 
= Bp, cos J.LX 

dx 

dX L 
For x = L/2, - = 0 = B J.L cos J.L -

dx 2 

5.7 
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This condition wi ll hold for /l = 1t/L, 31t/L, 51t/L, ... 
Thus a satisfactory solution is 

X B S. mt 
= zn - x n = 

L ' 

From the relationship for t we have 

which has the solution 

1 ,  3 ,  5, ... 

(5 . 12) 

(5 . 1 3) 

where C is an arbitrary constant. Substituting equations (5 . 1 2) and (5. 1 3) into (5 .8)  we 

obtain 

g(x,t) = D e -( n; J at sin 
n1t 

x n L 

(5. 14) 

where n = 1, 3,  5, .... By superposition we can add the solutions given by the different n 

values and obtain another solution. 
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g(x,t) = 
n =I ,3,5 .. . 

D e -(n;} ar 
sin nn x n L 

(5.15) 

The only remaining task is to define the coefficients, 00, so that equation (5.15) will satisfy 

the initial conditions, g(x,O) = h0 - d. Substitution into (5.15) with t = 0 yields, 

h - d = 0 
n=!,3,5 ... 

D . nn 
sm -x n L 

(5.16) 

The right side of equation (5.16) is a Fourier sine series representation of h0 - d. The values 

. mrcx dx of the coefficients Dn may be obtained by multiplying both sides by sm L and 

integrating between the limits of x = 0 to x = L. 

L 

L L 
kJ sm- sm -f (h -d) Sl·n mrcx dx = � D n J . nrcx . mrcx dx 

o L n=I.3.s... L L 
0 0 

f . nrcx . mrcx dx 
But sm- sm --L L = 0 form * n 

0 
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L 

2 
form = n 

Therefore by choosing values of m = 1 ,3 ,5 , ... we can determine Dn as 

2 L 
Dn = - J (h - d) sin mt x dx 

L o 
L 0 

D = � (h - d) ( -L) cos mtxiLo 
n L 0 mt L 

4(h0 - d) 
or Dn = ---- , n = 1 ,3 ,5 , ... 

n7t 

Recall that h = g + d so the solution may be written as, 

h=d + l: 
n=1.3,5 ... 

-(nn: � Kii1 
D e L I F sin mt x n L 

where Dn is given by (5 .17) . The flux at any point can be obtained from q 

(5 . 1 7) 

(5. 1 8) 

= -Kdh 
where dx 

dhldx may be determined by differentiating (5. 1 8) term by term. The flowrate entering from 

one side of the drain per unit length of drain is 
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= -Kh dhi dx x=O 

So Q = 2 Q� = -2Kh dh I dx x=O 

dh 

dx 

nx 
at x = 0 cos -x = 1 and h = d L 

Q = -2K d :E 
n=l,3,5, ... 

nx 
COS -X 

-(nnj Kii t 

D nx L f -e 
n L 

L 

(5.19) 

(5.20) 

In using equation (5.18) and (5.20) it should be remembered that they are subject to 

the D-F assumptions plus assumptions necessary to linearize the Boussinesq equation. 

Further, it is assumed that flow in the unsaturated zone above the water table is negligible 

and as the water table falls, water is instantly released with a drainable porosity of f. More· 

accurate methods than those given above will be discussed in later sections of this chapter. 

However the solution by separation of variables given above demonstrates a very useful 
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method and was the method used by Glover in the early 1950's to derive the first transient 

drain spacing equation. Glover's drain spacing equation may be obtained by using the first 

term of equation (5.18) and evaluating at x = U2. 

4(ho -
d) e -(ij Kf'ii, h =d+-�--

7t 

Rearranging and taking In of both sides gives 

In [ :(h -d)l(h0 - d)] = 

or 

(5.21) 

where L is the drain spacing required to lower the water table at x = U2 from h0 to h in time 

t. Recall that h = (h0
• 
+ d)/2. 

Many other drain spacing equations and methods have been derived since Glover's 

first equation. A few of these methods will be discussed subsequently in this chapter. Others 

can be found in the references provided. 
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f8'. 

5.3. Solutions to the Linearized Boussinesg Equation for R * 0. 

The solution obtained in the previous section was for R = 0. When the Boussinesq 

is linearized by using a constant flow depth, fi, the resulting G.P.D.E. is homogeneous. For 

R * 0 the linearized form is 

f 
ah 

= Klia2h 
+ R 

at ax2 

In nondimensional form the equation may be written as, 

aH -a2H 
= H- + 11-a't a�2 

Kho RL 2 
where H = hlh0, � = x/L, 't = --t 11. ---

, and H = ( 1  + D)/2. 2 ' Kh2 jL 0 

(5.22) 

For drainage from an initially horizontal water table, the boundary and initial conditions are: 

H= 1 

aH 
= 0 a� 

H=D , 

't = 0 ' 

't > 0 ' �=0 

(5.23a) 

(5.23b) 

(5.23c) 
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We can make the boundary conditions "homogeneous" by the transformation 

J=H - D. Then 

with boundary conditions 

J = 1 -D, 

aJ 
= o 

a� 

J=O 

1: = 0 ' 

(5 .24) 

(5.25a) 

(5 .25b) 

(5.25c) 

However the G.P.D.E. (equation (5.24)) is not homogeneous and a further 

transformation is needed to permit solving by the method of separation of variables. Let 

J(�,1:) = G(� 1:) + lJI(�). Where lJ1 is a functi<?n of lJ1 alone and is not yet specified. 

aJ 
Then at 

a a 
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(5 .26) 

And the boundary conditions may be written, 

G = 1 -D-tJl(�) 't = 0 ' (5.27a) 

't > 0 ' (5.27b) 

G = -lJI(O) 't > 0 ' �=0 (5.27c) 

Now we choose tJl(x) such that equation and the boundary conditions are simplified as much 

as possible. That is let lJ1 be such that 

Integration yields 

d\j/ = _ ..!!:_ l; + c 
dl; H 

1 

'l'(l;) = _ ...1!:_ l;2 + c l; + c 
2H 

I 2 

5.15 
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We may choose C1 and C2 to simplify the boundary conditions. Let dlfl/d�=O at � �'2. 

Then c. = p_ · _!_ =L AI I ·••(0) 0 h' h Id . C 0 
H 2 2H 

. so et 'f = w 1c wou reqmre 2 = 

and 'I'(�) = JL ( -�2 
+ �) 

2H 

Then the G.P.D.E. may be written as 

and the boundary conditions reduce to: 

G = 1 -D- Jl. ( -�2 + �) 

ao = 0 
a� 

2H 

(5.29) 

(5.30) 

't = 0 ' (5.3 1a) 

't = O  ' (5.3 1b) 

G = O  't = O  , � = 0 (5 .3 1c) 
Equation (5 .30) may be solved subject to boundary conditions (5.3 1 )  in the same 

manner that was used in section 5.3 , and the general solution may be written as, 

G(t,�) = L Dn e -H "2 rt sin mt� n=l,3,5, ... 

5. 16 
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The values for Dn are found by using the initial condition (5.3 1a) as was done in the previous 

section to obtain equation (5 . 17). This is left for the student to complete (Problem 5-6) . 

5.4. Other Methods for Predicting Water Table Drawdown 

After Glover's initial water table drawdown methods were presented,- a number of 

other approaches were made. One of the most interesting and useful was presented by 

Bouwer and van Schilfgaarde ( 1963). They assumed that the rate of water table drawdown 

midway between drains could be expressed as, 

or 

or 

fdh = q dt 

fdm = q dt 

'1m =  Cq 

C -
qm 
q 

C 
dm = P 
dt f 

(5 .33) 
where P is the instantaneous drainage rate, f is the drainable porosit)', m is the height of 

water table midway between drains above the elevation of the drain center and C is a 

constant that is introduced to account for the change in water table shape, i .e . ,  the fact that 

the rate of water table drop varies with distance from the drain. One method of determining 

the drainage rate is to assume that, for any value of m the drainage rate is equal to the rainfall 

rate that would result in a midpoint water table elevation of m on a steady state basis. In 
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Chapter 4 we found that the following relationship held for drainage under steady state 

rainfall, 

h 2 = - p x2 + PL X + a; 
K K 

(5.34) 

where de is the equivalent depth to the impermeable layer to account for convergence near 

the drains. At x = U2 we could relate m to P by Hooghoudt' s equation 

q = 

h
2 = - p Lz + PL2 +a; 

m 4K 2K 
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and P = (5.35) 

Substituting (5.35) into (5.33) and integrating we have 

8K t de L2 = _______ ..:...,__ ___ _ 

fIn [m0 (m + 2de)lm(m0 + 2de)] 

(5.36) 

When f is not constant and/or another relationship is 1,1sed to determine P = P(m), 

such as a graphical solution, equation (5.33) can be used to predict drawdown in a stepwise 

manner, as, l:lt = -C !imf where P is the mean value of p 

P for each Am. 

van Schilfgaarde (1963) derived an equation for an initially parabolic water table 

which may be expressed as, 

9Ktd L2 = 
-------

m0 (m + 2d) 
fln 

----­

m(m0 + 2d) 

(5 .37) 

As in Glover's equation, the D-F assumptions were used so Hooghoudt's equivalent depth 

is $Ubstituted for d in equation (5.37). However, the inherent assumption of a constant flow 

depth in Glover's solution was avoided in the derivation of equation (5 .37) . 
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5.5. Numerical Methods 

Because simplifying assu�ptions are necessary to solve the Boussinesq equation for 

many boundary conditions of interest, there are advantages to us�ng numerical procedures 

to predict water table movement. The Boussinesq equation is first written in nondimensional 

form, 

where H h 

X 

L 

_ _ Khi 
and 't JL2 

aH = j_ [H 
aH] + IL 

a1: a� a� 

(5.3 8) 

The solution domain; i.e. the range of independent variables for which a solution is desired; 

is defined by 't > 0, 0 < � < 1. For symmetrical systems such as drainage or subirrigatiori 

from parallel drains, we need only the solution for 0 < � < Y2. Numerical solutions are 

obtained by writing (5.38) in finite difference form. The solution domain is shown 
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schematically in Figure 5-2. 

tiE. • • • • i-1 -c: 

� � 

Solution domain for finite difference solutions to the Boussinesq equation. 

The 't axis is broken into increments of length Lh and the � axis N increments of length A�. 

The number of the increment is designated by i for the � axis and j for the 't axis. Then any 

point ('t�) can be represented by (jA't, iA�) . 

There are many ways of formulating a finite difference expression for equation 

aH 
(5.38). The simplest form to solve is the explicitly form in which a't is written as, 
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aH dH Hij - Hij-1 
a1: 

= d1: I � = ronstanr 
= 

Ll 't 

(5 .39) 

and the right hand side of (5.38) is written in terms of H at 'tj_1• While this finite difference 

form is easy to solve, it requires very small 't increments and has high computational 

requirements. 

The implicit finite difference form will be used herein. In the implicit form aHia-r 

is written as given in (5.39) which is termed a backwards difference approximation of aHia-r .. 

Before treating the right side of (338) we shall rewrite it in the followfng form: 

aH a [ aH] 
a; = a� G(H) � + J.t 

where G(H) = H and is defined simply for convenience. Then, 

(5.40) 

we can approximate aHia� by either forward difference, 

aH 
- = (H. I. - H .. )fll"J=. 
a� ,+ J 'J ..., 

(5.41) 

or by backward difference, 

(5.42) 
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Taking the average these two approximations we get, 

Likewise 

aHia� = <�+IJ - �-IJ)/2a� 

aota� = (Gi+IJ - oi-I)t2a� 

(5 .43) 

(5 .44) 

We can interpret equation (5.42) as aHia� at the point (i-'h,j) and (5.4 1 )  as aHia� at (i + Y2, 

a2H ( aH aH ) 
j). Also we may write 

a�2l;j = a� 
li+Vzj- a� 

li-Vzj 11:1�. 

Then 

Substituting equation (5.39), (5.43),  (5.44) and (5.45) into (5.40) we obtain, 
(5 .45) 

(5.46) 

Equation (5 .46) may be simplified and written for each interior node (i.e. all notes 

i, j except for those at the boundary where j= l, i= l, or i = N(�= l)) as, 

(5 .47) 

where 

(5 .48a) 

(5.48b) 

(5 .48c) 
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and (5.48d) 

The solution procedure will be demonstrated for the line of nodes atj = 2. Note that 

His known at 't = 0 G= l) from the initial condition. Then for each interior position node we 

write, 

A2.2 H1.2 + B2.2 H2.2 + C2.2 H3,2 

A3.2 H2.2 + B3,2 H3.2 + C3.2 H4.2 

=D4,2 

(5.49a) 

(5.49b) 

(5.49c) 

(5.49d) 

The result is a tridiagonal matrix of N-2 equations in N unknowns. However the boundary 

conditions H1,2 and HN,2 are known so Hi,2 can be solved for each node, i. The coefficients 

A, B, C, D, are functions of �J so they are first evaluated in terms of �J-I which is known 

for all points, i. Then the set of equations (5.49) are resolved using the new coefficients and 

the coefficients are re-evaluated. This iteration process is continued until the new values 

obtained are the same as the values assumed or within an acceptable margin of error. Then 

j is increased by 1 (to j=3) for the above example and Hi,3 determined by the same procedure. 

Solution of the tridiagonal matrix can be easily obtained using the Gaussian 

elimination method described by Richtmeyer (1963). Because we solve the set of equation 

(5.49) for a given 't, we will drop the subscript j in the equations that follow. Unless 

otherwise noted it is assumed that Hi, Ai, etc. are actually HiJ• AiJ• etc. Now define a set of 

parameters Ei and Fi such that, 
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Then 

Substituting (5. 5 1) into (5 .47) we obtain, 

D. - AlF. I 1 1-

B. + A. E. I I I 1-

ci 
----- Hi+t ·B. + A. E. I I I 1-

Therefore Fi = D. - A.F. I I I 1-

B. + A.E. I I I 1-

If H is known at the boundary (� = 0, i = 1 )  equation (5.49) may be written, 

and H2 
c2 = --H B 3 2 

Therefore E z = -C/B2 and F 2 = 

From (5.53) E 2 
-c 2 

5.25 
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(5 .51) 
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Now that� and F2 are known, E3, E4, • • •  EN-I and F3, F4, •• • FN-I can be calculated in terms of 

the coefficients Ai, Bi, Ci, Di and the Ei-l, Fi-l values. That is, we can define the array (Ei, F) 

from i= l to N- 1 .  If the boundary condition is known at � = 1  (i=N) we can then determine Hi 

by simply starting at i = N- 1 as, 

(5.55) 

And march thusly back to i = 2 where 
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1. 

2 .  

3. 

4. 

5. 

6.  

5.6 

Therefore the numerical procedure may be summarized as follows: 

Starting withj=2 define the coefficients Ai, Bi, Ci, and Di for all interior nodes i = 1 

to N-1. Because these coefficients are a function of Hi which is unknown, assume 

HiJ = �J-I for the first iteration. 

DetermineEi and Fi for i=2 to i=N-1 using equation (5 .53) and the fact thatEi = 0 and 

Fi = Hi for a constant H at � = 0. 

Determine Hi for i =  N-1 to i = 2 using the Ei and Fi values obtained in 2 above and 

equation (5 . 50) . 

Re-evaluate the coefficients using the new� values obtained in 3. 

Compare coefficients from 4 with those assumed in 1. If they are equal or within 

acceptable limits go to 6 below. Otherwise make another iteration, go to 2 above and 

repeat steps 2-5. 

You now have a solution for �J• increment t by �t (i.e. increase j to j+ 1 and go to 

1 above). Repeat until solutions are obtained for the desired range of t. 

Results of Numerical Solution to the Boussinesq Equation. 

Results of numerical solutions to the Boussinesq equation for an initially horizontal 

water table can be plotted in nondimensional form for general application. Methods 

described in section 5.5 above were used to obtain solutions for parallel ditch drains (cases 

c and d in Figure 5.3) for a range of nondimensional drain depth and J.L values. Solutions 

were obtained for both drainage and subirrigation. Similar methods were used for the case 
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Figure 5.3 
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of a single drain (cases a and b in Figure 5.3 ). The methods for the single drain are described 

in detail in the following paper: 

Skaggs, R.W. 1976. Determination of the hydraulic conductivity-drainable porosity ratio 

from water table measurements. Trans. Of the ASAE, Vol. 19(1):73-80. 

Solutions for both draining profiles (case a) and rising water table profiles (case b, 

subirrigation) are plotted in Figure 5.4 for the case of a single drain with p.=O. These 

solutions are appropriate for very widely spaced drains (semi-infinite drain spacing). 

Solutions for both draining (case c) and rising (subirrigation, case d) profiles at the 

midplane between drains, XIL=0.5,  are plotted in Figure 5.5 for p.=O. The resolution for 

large D values is not very good on such plots. Resolution can be improved by making the 

transformation y=h-d and plotting Y =y/yo rather than H=hlho. This was done for a range of 

p. values forXIL=0.5 (Figures 5.6-5. 10),  for XIL=0.25 (Figures 5. 1 1 -5.15) and forXIL= O.lO 

(Figures 5.16-5.20). Similar plots were generated for subirrigation as shown in Figure 5.21 

for XIL=0.5 and �J.=-3 .0 . 

The plotted solutions in Figure 5 .5  through 5.2 1 were a convenient form of presenting 

and applying results of the numerical solutions when we first obtained them in the mid-

1970s. Today' s fast, portable computers make it possible to directly obtain solutions for the 

specific case of interest, i.e. the specific D and #L values. However, the plotted solutions 

provide a convenient visual representation of the solutions and can be used to obtain quick 
solutions by hand. 

Note that the solutions plotted in Figures 5.5 through 5 .21  have not been corrected 
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for convergence near the drain. This correction may be very substantial for some cases when 

drain tables are used. It can be done by replacing d by de as discussed in the previous 

chapter. This requires recalculation of h0 as well as D=dJh0• 
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5- l .  A Wagram loamy sand has a saturated hydraulic conductivity of 6 cm/hr and 
drainable porosity of 0. 1 .  The soil is 1 80 em deep to an impermeable layer. Drains 
6 inches in diameter are placed 100 em below the surface and 30 m apart. Determine 
(a) the drawdown after 24 hours at a point midway between the drains; (b) the 
drainage rate at t = 0, 1 2, and 24 hours. Use the series solution to the linearized 
Boussinesq equation for this problem. Show the effect of using 1 ,  2, and 3 terms in 
the series solution on the answers to (a) and (b) above. 

5-2. Starting with the Boussinesq equation, 

and the boundary conditions for drainage to parallel drains with an initially horizontal 
profile, write the equation and boundary conditions in non-dimensional form. 

What are the advantages for using a nondimensional form? 

5-3 . Linearize the nondimensional form · of the Boussinesq equation and solve for a 

5-4. 

ah a ah 
horizontal initi f - = - h- + R al water table using separation of variables at ax ax 
for the case where R = 0. 

The water table is initially horizontal at a distance d above the impermeable layer. 
At time zero the water level in the drains is raised a distance h0 above the 
impermeable layer. Determine the solution for this problem by separation of 
variaples. 

5-5 . For the subirrigation problem of 5-4 and conditions given in 5 - 1  find the water table 
rise at x = 1 m and x = 1 5  m for t =  1 ,  12  and 24 hours. Determine the subirrigation 
rate for the same times, i .e .  the outflow rate from the drains. 

5-6. Solve 5-3 for R "* 0 by separation of variables. 

5-7. Solve 5-4 for R "* 0 by separation of variables. 

5-8.  Lumbee sandy loam has K = 4 em/hr. Drains are to be placed 4 ft. deep. How far 
apart should the drains be such that the water table will not be closer than 1 ft . from 
the surface if steady rainfall occurs at a rate of 7 mm/day? The drainable porosity f 
= .05 cm3/cm3• The impermeable layer i s  6 ft. from the surface and the effective 
drain diameter is 2 .5 em. 

5-9. For the drain spacing above, what will be the drawdown midway between drains 

5 . 49 



5- 10. 

during the first 24 hrs. if the water table is initially at the surface? 

10 1 
5 '  

For the above situation the water table is initially at the surface ( h = 10 ft. , a t  t = 0, 

all x). Observation well records indicated the water table fell 1 ft. in 6 hours. What 

is Kif for this soil? 

5- 1 1. For the soil in problem 5-10, how far apart would the ditches need to be spaced to 
give a drawdown midway between of 8 in. in 36 hrs. ? 

5-12 .  100,000 acres of G 1 00-Gray soil are to be drained by pl�mn rub. mg .... 'fhe soil 
is uniform with an impermeable layer at 1 5  ft. deep. Draw�f 1 5  em in �'hours 
is measured in an observation well located 70 ft. from a smg�-. deep. 
How far apart will 5 inch drain tubing re = 2 em need to be placed to provide 
drawdown midway between drains of 9 inches during the first day? Assume the 
tubing is placed at a depth of 100 em . NOTE : Consider convergence near the 
drains. 

5- 1 3 .  Find the spacing for problem 5- 1 2  if the drains are placed at a 1 50 em depth. At a 

200 em depth. 

5 - 1 4. For the drain spacing found in problem 5- 1 2, determine drawdown midway between 
the drains if the ET rate is 0.2 em/day and f=0.04. Also for e =  -0.6 em/day. (Use 
numerical solutions) 
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5- 1 5 .  A soil has K = 8 em/hr and a drain spacing of 40 m .  The following relationship 
between WTD and the volume drained was determined from the soil water 
characteristic. 

WTD 
0 
10 cm 
20 
30 
40 
50 
60 
70 
80 
90 
100 

vd 
0 
0. 1 8 
0 .66 
1 .34 
2 .46 
4.07 
6.93 
9 .67 
1 2.36 
14.97 
17.59 

Depth to the impermeable layer is 2 .5  m. The water table is initially at the surface. 
The drains are 4" standard with re = 1 .5 em placed at a 1 .0 m depth. Plot the 
drawdown at the midpoint as a function of time. Assume f = 0.02 for WTD = 0. 

5-16 .  Repeat problem 5- 1 5  for a layered soil with K = 10 cm/hr for the top 100 e m  and 4 
cmlhr for the remainder of the profile. 

5- 17 .  

5- 1 8  . 

Repeat problem 5- 1 5 for a layered soil with the following K values: 

layer depth 

0 - 40 cm 
40 - 120 cm 
120 - 250 em 

K 

20 cmlhr 
4 cmlhr 
10 cm/hr 

Repeat problem 5- 15  if there is evaporation from the surface at a rate of 0.3 em/day 
for the first 48 hrs . and a rate of 0.6 em/day thereafter. 
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