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THIS paper presents a simplified
procedure for predicting rate of
fall of the water table in tile-drained
or ditch-drained land. The procedure
is based on steady-state theory and
abrupt drainage of pore space. In this
respect, it lacks the theoretical sophis-
tication of certain other treatments (2,
4, 5,7, 8, 18)%. Its simplicity, general
applicability, and apparent accuracy,
however, favor use of the proposed
procedure in routine drainage design.
The first part of the paper presents the
simplified design procedure, which is
discussed and compared with other so-
lutions.

PROCEDURE

Principles

The procedure relates to the fall of
the water table midway between drains,
where the water table recession is the
slowest and, therefore, the most critical.
If the water table is assumed to fall
without change of shape, the flux per
unit area of water table is uniform be-
tween drains. Therefore, steady-state
drainage relationships, which also as-
sume a uniform flux, can be used to de-
scribe the rate of fall (dm/dt) of the
water table midway between the drains,
or

dn P
dt f

where

P = instantaneous drainage rate or
coefficient (dimension length /time)

f = drainable porosity (dimension-
less)

and m = height of water table mid-
way between drains above tile center
(Fig. 1).

The assumption underlying equation
[1] is that the instantaneous drainage
rate midway between drains can be
taken as equal to the steady-state drain-
age rate corresponding to the same
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FIG. 1 Geometry and symbols for falling
water table in drained land.

value of m. The minus sign in equa-
tion [1] accounts for m decreasing with
increasing t. The procedure in this pa-
per can also be applied to rising water
tables. In that case, the minus sign in
equation [1] is omitted.

The principle for predicting the rate
of fall of the water table midway be-
tween drains consists essentially of in-
tegrating equation [1] to obtain a re-
lationship between m and t. The pre-
viously stated assumption implies that
the P versus m relationship utilized in
this integration can be taken from exist-
ing steady-state solution methods for
tile or ditch drainage as the case may
be.

The assumption that the water table
falls without change of shape is of lim-
ited validity. For some time following
a ponded condition, the water table
falls faster near the drains than mid-
way between the drains and the aver-
age flux P per unit area of water table
exceeds the flux f dm/dt midway be-
tween drains. The region where this
condition applies is shown as zone
ABCD in Fig. 1, which is schematically
taken from drawings by Kirkham and
Gaskell (8) and Isherwood (7). After
having receded faster near the drains
than midway between the drains, the
water table reaches a position where it
falls for some time without appreciable
change in shape (zone CDEF in Fig.
1) and P equals f dm/dt. As recession
progresses, the water table eventually
falls faster midway between the drains
than in the vicinity of the drains (zone
EFGH in Fig. 1) and P is less than f
dm/dt.

Thus with a falling water table the
flux in general varies with distance from
the drain. Hence, in order to use steady-
state solutions, which assume a flux that
is independent of time and of distance
from the drains, for prediction of the
rate of fall of the water table, a correc-

tion factor C is introduced in equation

[1], yielding

P=—iC dm
dt
According to the previous paragraph,
C can have the following ranges:
C > 1 for region ABCD
C = 1 for region CDEF
C < 1 for region EFGH

Generally C appears to be between
0.8 and 1.0, except for the first stages
of recession following a ponded case
where C is higher, A more detailed dis-
cussion on selecting C is presented in
the section, entitled “The factor C.”

Equation [2] can be integrated ana-
Iytically or numerically, depending on
whether the relationship between P
and m is available in terms of an equa-
tion or in tabular or graphical form.
Both the analytical and numerical inte-
gration will be discussed in the follow-
ing paragraphs.

Analytical Solution

The analytical solution utilizes
steady-state drainage formulas where
P is expressed as a function of hydrau-
lic conductivity K, drain spacing S,
height m of water table midway be-
tween drains above the level of the
drains, depth d of impermeable ma-
terial below level of the drains, and
drain radius (See Fig. 1 for geometry
and symbols). The equation selected
in this paper for the integration of equa-
tion [2] is Hooghoudt's equation, writ-
ten here as

P = 4Km(2d, + m)

S2

where d, is the “equivalent layer” to
take into account the flow convergence
near the drains (6). Tables are pre-
sented by Hooghoudt (6) which show
d, as a function of d, S, and . A graph
by van Schilfgaarde (13), giving
Hooghoudt’s d,, values in feet as a func-
tion of d and S for a tile diameter of
5 in., has been expanded to cover a
wider range of spacings and is shown
here as Fig. 2.

Substituting equation [3] into equa-
tion [2], integrating between ¢ = 0,
m, and ¢, m,; with C considered con-
stant, and rearranging terms gives

Kt 2.80821 m, (my + 2d,)

f 8d, o610 my (m, + 2d,)
................. [4]

This article is reprinted from the TransacTiONs of the ASAE (vol. 8, no. 4, pp
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Equation [4] can be used to calculate
Kt/f for a selected water table drop
from m, to m; and a certain S and d,.
The time for the water table to drop
from m, to m, is then computed by
multiplying Kt/f by f/K for the par-
ticular soil. For example, if K = 7.5
ft per day; f = 0.15; d = 5 ft; § =
125 ft, and C = 0.8 (see section “The
factor C”), Kt /f for a water table drop
from m = 6 ft to m = 5 ft is computed
with equation [4] as 41 ft, which
gives t = 0.8 day. The d, value for
this computation was evaluated as 4.3
ft from Fig. 2.

To find a drain spacing that gives a
specified rate of water table drop, as-
sumed S values are used in Equation
[4] until the desired Kt/f is obtained.

Numerical Solution

The numerical solution of equation
[2] utilizes relationships between P
and m in graphical or tabular form.
The solution is, therefore, applicable
to any solution method of the steady-
state condition, whether it is analytical,
numerical, via nomographs, analogs,
models, field experiments, or others.
The numerical integration is carried out
with a plot of P as a function of m for
a given drain design (hypothetical ex-
ample shown in Fig. 3). The m scale
is divided into increments Am. For
each Am, the mean drainage rate ¥ is
determined. The time At for the wa-
ter table to drop an increment Am is
then simply computed as

The total time required for a water
table drop from m,, to m, is determined
by adding the increments At for the
Am increments between m, and my.
This procedure also lends itself for tak-
ing into account variable drainage
porosity with depth, as illustrated in
the example in Table 1, which applies
to the P-m relation of Fig. 8. If the
problem is to find a drain spacing that
meets a specified rate of fall of the wa-
ter table, the procedure in Table 1 is
repeated with P-m curves for different
S wvalues until the desired spacing is
found.

Direct Numerical Solution
for Drain Spacing

A more general approach that elimi-
nates the trial-and-error procedure for
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FIG. 2 Hoeghoudt’s equivalent depth d, as a function of d for different drain spacings
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finding the desired drain spacing, util-
izes P versus m curves for a number of
drain spacings. An example of such a
family of curves is shown in Fig. 4,
where P/K is plotted against m/d for
different values of S/d. This graph
was obtained from the nomographs,
which were developed by Ernst and
Boumans (12, pp. 93 and 94) in The
Netherlands, where tile diameters of 2
to 8 in. are commonly used. In using
plots as Fig. 4, the tile depth must be
selected first so that d can be evaluated.
A certain distance of fall of the water
table from m, to m,; is then selected
and the corresponding m,/d and m;/d
are marked on the graph. From the
specified time At for the water table to
fall from m, to my, ® is calculated with
equation [5] as

_ CfAm

At

Knowing the hydraulic conductivity of
the soil, /K is now computed. The
S/d curve for which the average P/K
between m,/d and m;/d is equal to
the computed value of ¥/K is deter-
mined from Fig. 4. Since d is known,
the spacing S can be calculated.

To illustrate this procedure, it will
be applied to the same conditions as
the example presented under the sec-
tion “Analytical Solution.” To this end,
the spacing giving the same rate of
water-table drop, that is, from m = 6

.......

TABLE 1. EXAMPLE OF NUMERICAL SOLUTION FOR CALCULATING RATE
OF FALL OF WATER TABLE

(For curve in Fig. 3, C = 1)

m, Am, £ f A, 1’5, Ab t,
feet feet feet ft/day days days
5 0
1 0.2 0.2 0.165 1.2
4 1.2
1 0.15 0.15 0.125 1.2
3 2.4
1 0.15 0.15 0.088 1.7
2 4.1

ft to m = 5 ft in 0.8 day, will be de-
termined, Taking C = 0.8, equation
[6] yields ¥ = 0.15 ft per day, which
gives /K = 0.02. The m/d values cor-
responding to m = 6 ft and m = 5 ft
are, respectively, 1.2 and 1.0. The
broken lines in Fig. 4 show that the
curve giving an average value of P/K
of 0.02 between m/d values of 1.0 and
1.2 has an S/d value of 25. Since d
= 5 ft, the required spacing is 125 ft,
This equals the spacing used in the
previous example for the analytical so-
lution.

The factor C

The factor C in equation [2] can
be considered the ratio of the average
flux between drains to the flux midway
between the drains. In theory, this is
valid, only if the average of a non-uni-
form flux gives the same drainage flow
as when that average was uniformly
distributed along the water table, which
can be expected to be true for rela-
tively low degrees of non-uniformity of
flux. In that case, C can be deter-
mined as the ratio of the average dis-
tance of fall of the entire water table
to the fall midway between the drains
for a certain time increment. Bouwer
(1) has shown that this ratio is about
0.8 for m/S values from 0.02 to 0.08
and low d values. A C value of ap-
proximately 1.0 is indicated by Childs’
work (3) for higher water tables with
m/S exceeding 0.15. The drainage
literature abounds in other examples of
water tables receding with little change
in shape, all pointing to C values of ap-
proximately 1.0. C values in excess of
1.0 can Dbe expected for the initial
stages of water-table recession follow-
ing a ponded case.

For the drop immediately following
the ponded case, C will be high initially




but will undergo a rapid reduction as
the rate of fall of the water table near
the drains becomes slower. Thus, C val-
ues for the first stages of water-table re-
recession following a ponded condition
camnot be obtained very well, and the
use of a constant C in the integration is
objectionable. However, the Kt/f val-
ues for subsequent stages of water-table
recession are much larger than for the
first increment of water-table drop, so
that the relative effect of errors in the
initial C values on the Kt/f values for
the more advanced stages of water
table recession is small.

As an illustration, equation [4] was
applied to calculate Ki/f for a falling
water-table analysis by Kirkham and
Gaskell (8). In that analysis [Fig, 4
in (8)], water-tables at Kt/f of 2 ft,
4 ft, and 6 ft are shown for a receding
water-table in tile-drained land from a
ponded condition at K¢/f = 0. C val-
ues for the three water-table positions
were determined by measuring the area
between field surface and the succes-
sive water-tables with a planimeter.
The average distance of fall of the wa-
ter-table was then computed and di-
vided by the distance of fall midway
between the drains to yield C. The re-
sulting C values for the Kt/f values of
2 ft, 4 ft, and 6 ft were 2.9, 2.7, and
2.8, respectively. Substituting these C
values in equation [4] gave Kt/f val-
ues of 2.7 ft, 4.8 ft and 6.8 ft. Thus, the
relative error was largest for the first
increment of water-table recession,
which can probably be attributed to
the large variation in C for the first
water-table drop following a ponded
condition. The calculated Kt/f values
for the subsequent water table posi-
tions, 4.8 ft and 6.8 ft, respectively,
show better agreement with the values
of 4 ft and 6 ft given by Kirkham and
Gaskell. The Kt/f increments for the
second and third increments of water-
table drop resulting from the calculated
values with equation [4], i.e., 2.1 and
2.0 ft, respecdvely, are almost the same
as the theoretical K¢/f increments of
2 ft given by Kurkham and Gaskell.

To illustrate the small relative effect
of emroneous C values for the first in-
crement of water table drop on the sub-
sequent Kt/f values, Kf/f for a reces-
sion from the ponded case to m = 1
ft will be computed for the same case
[Fig. 4 in (8)]. Starting with the
water-table at K¢/f = 6 ft and assum-
ing a C of 0.80 for the water-table re-
cession thereafter, the additional Kt/f
for the water table to drop to m = 1 ft
is calculated with equation [4] as 24
ft. The total Kt/f for a water table re-
cession from the ponded case to m =
1 ft is, therefore, equal to 6 + 24 =
30 ft. Calculating Kt/f for the same
total drop with equation [4], using a
C value of one, yields 83 ft, which does
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FIG. 3 Example of P versus m relation-
ship for graphical integration of equation
[21.

not differ much from the 30 ft previ-
ously obtained. The C value of 1.0 was
selected in this calculation of Ki/f, be-
cause short-term C values in excess of,
equal to, and less than 1.0, could be ex-
pected for this recession.

From this discussion, it is apparent
that C can generally be selected as
unity., For relatively low water tables
with (m/S) < 0.1, C can be taken as
0.8. For high water tables near the
drains that recede much faster than
the water table midway between drains,
such as following a ponded case, C
values in excess of 1.0 must be selected,
for instance, from 2 to 3. The appli-
cation of the procedures in this paper
to the initial stages of water-table re-
cession after a ponded condition, how-
ever, must be considered with reserva-
tion.

CAPILLARY FRINGE

The role of the capillary fringe in
falling water-table analyses can be sum-
marized as follows:

(a) The fringe provides an extra
path for the drainage flow, so that P
for a certain m is higher with fringe
than without fringe. Bouwer (1) has
shown that this effect can be accounted
for by adding the fringe thickness to
d in the evaluation of d,.

(b) Drainage of pore space takes
place only if the distance of the water
table below field swrface exceeds the
fringe thickness. Thus very rapid rates
of water-table recession occur if the
water table is sufficiently high for the
fringe to extend to field surface (2).

(¢) From a soil-aeration standpoint,
the top of the capillary fringe is more
significant than the water table, which
is only a pressure contour. Adequate
desaturation can be effected by proper
selection of m, and m, in specifying
rates of water-table recession for design
purposes. Higher water tables can be
tolerated in light-textured soils than in
heavy-textured soils,

STEADY STATE SOLUTIONS

Although this paper refers mainly to
designing drainage systems for a cer-
tain rate of fall of the water table, the

material presented will also be useful
if drain spacings are to be calculated
on the basis of the steady state. The
problem in that case is generally to
find the drain spacing that gives the
desired drainage rate P at the maxi-
mum permissible water table. The lat-
ter is characterized by m after the
drain depth has been selected. With
Hooghoudt's equation (3), this requires
a trial-and-error procedure whereby
{(a) a certain tile depth is selected, (b)
the resulting d and m are determined,
(¢) a number of § values are assumed,
(d) the comresponding d, values are
evaluated from Fig. 2, and (e) P is
calculated with equation [3]. This
procedure is repeated until S giving
the desired P is found. Direct solution
of S can be obtained with Fig. 4, where
the S/d curve giving the desired P/K
for the m/d value in question, can be
directly evaluated.

ErrFEcT OF DRAIN DIAMETER

According to equation [3], the effect
of drain diameter on drain spacing is
proportional to the effect of drain size

on \/2d, + m. Hooghoudt’s tables
(6) show that the effect of tile diam-
eter on d, is small and increases with
increasing d, as illustrated in Table 2.
Since S varies with even less than ~/d,,
the effect of tile size on S is relatively
small and Figs. 2 and 4 can be used for
other drain diameters as well,

TABLE 2. EFFECT OF TILE DIAMETER

(OD) ON d_FOR TWO VALUES OF d
AND S = 100 FT

Tile diameter de in feet
in. d =33 ft d = o
2.4 2.79 6.70
4.7 2.95 7.65
7.9 3.05 8.46
15.8 3.21 10.00
DiscussioNn

The integrated form of steady-state
relationships for application to transient
conditions is subject to the same limi-
tations as the original steady-state rela-
tions. A number of drainage theories
have been based upon the Dupuit-
Forchheimer assumption of horizontal
flow. The neglect by such theories of
the effect of convergence of flow
towards the drain causes an increas-
ingly large error for increasing values
of d. This limitation can be overcome
by substituting for d an equivalent
depth value, d,, as was done by Hoog-
houdt (6) in equation [8].

The principle of integrating a steady-
state solution for the transient case can
be applied to analytical equations other
than Hooghoudt’s, For example, Toks6z
and Kirkham (10) gave the equation.

1 - F

F(r/S, d/8)



where the function F is evaluated from
graphs or tables. When P/K is small
compared to unity, equation [7] can
be written as

p=_—_" 8]

S F(r/S, d/S)

Combining equation [8] with equa-
tion [2] and integrating gives

X sl 1ne\p (s, dss). [9]
f 1 my
Since the equation by Toksbz and Kirk-
ham was developed from potential
theory and not from the Dupuit-Forch-
heimer assumption, there is no restric-
tion as to the magnitude of d.

To compare the integrated steady-
state equations with equations that have
been specifically developed for tran-
sient drainage conditions, the authors
have selected the Glover equation (4),
a proposal by Luthin and Worstell (9),
data presented by Isherwood (7), and
a more recent proposal by van Schilf-
gaarde (13).

The Glover equation reads:

S = [%{ 4+l 1t m"j%

2 f T My

It is derived from the Dupuit-Forch-
heimer assumption, with the additional
simplification that the thickness of the
water-bearing aquifer can be approxi-
mated as the constant d -+ m,/2. Thus
it neglects the effect of convergence of
flow toward the drains, and this factor
would lead one to expect its predictions
to be increasingly less accurate as d
increases. Furthermore, at small values
of d, the assumption of a time-constant
thickness of the aquifer is not met even

approximately.
Luthin and Worstell’s equation is
s=__4Kt 0]

af In(m,/my)
The main assumption in its derivation
is that the discharge rate is propor-
tional to the height of the water table,
or g = cKm, where ¢ is assumed con-
stant. It appears, however, that in fact
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FIG. 4 Family of curves of P/K versus
m/d for different S/d values for direct
evaluation of desired drain spacing (from
nomographs by Ernst and Boumans).

TABLE 3. COMPARISON OF FALLING-WATER TABLE PREDICTIONS
m = 3 ft, m, = 2 ft, and tile radius, 3 in.

Xt/f in feet

8, d, Integrated
feet feet Integrated g van . . 3
Hooghoudt 'Ilgrls(%znéic Schilfgaarde Luthin Glover Isherwood
30 0 30 33 8.0 39
2 13 21 14 8.0 17 14
4 9.6 15 10 8.0 11 11
8 8.3 12 8.8 8.0 6.2
16 8.2 11 8.8 8.0 3.3 13
32 8.2 11 8.8 8.0 1.8
8.2 11 8.8 8.0 0
60 0 120 133 16 157
2 47 79 5 16 67 46
4 34 47 36 16 43 44
8 26 32 27 16 25
16 23 27 24 16 13 47
32 23 26 24 16 7.1
283 26 24 16
120 0 480 533 32 628
2 183 300 200 32 270 163
4 124 167 133 32 172 190
8 84 103 85 32 79
16 65 74 67 32 54 190
32 58 64 60 32 28
58 62 60 32 0
240 0 1920 2133 64 2524
2 731 796 64 1080
4 475 625 510 64 688
8 299 350 309 64 398
16 197 218 208 64 216
32 151 163 157 64 113
137 137 141 64 0

¢ is a function of the drain spacing.
Since the discharge rate, g, is propor-
tional to the hydraulic gradient, and
the gradient in turn is inversely pro-
portional to the length of the average
flow path, the relation for ¢ would be
better written
g = ¢ Km/S

which gives ¢ = ¢;/S. Thus Luthin
and Worstell's equation can be expected
to predict too small a change in ¢ for
a given change in S. In addition,
Luthin and Worstell's equation does
not take into account the depth of an
impervious layer. Hooghoudt (6) and
van Schilfgaarde et al (12) have,
among others, shown this to be an im-
portant factor,

The comparison with Isherwood’s
data is based on table 1 of his publica-
tion (7), which presents results of fall-
ing-water-table analyses with a digital
computer. Some of the data in Isher-
wood’s table show irregular trends
when plotted against d.

The third transient equation with
which a comparison will be made is by
van Schilfgaarde (13). This equation
is

S =8A

Kt (m; + d,) (m, + d)7%
f 2 (m, — my)

where A represents an incomplete beta
function, It is evaluated as a function
of d,/(d, + m,) elsewhere (13), but
may be approximated within 8 percent
error as
A= (1 - [de/(de + 'm'o)]’?')”/2

The derivation of van Schilfgaarde’s
equation is based on the Dupuit-Forch-
heimer assumption, but the convergence
of flow is accounted for by substituting
d,, for d and the thickness of the aquifer
is treated as a variable, rather than as
a constant as did Glover.

Table 8 summarizes a comparison of
all of the solutions discussed. For each
solution, the length of time required
for the water table to drop one foot
from an initial height of three feet
above the drains was calculated. To
eliminate the effect of the soil char-
acteristics, the results were expressed
in terms of Kt/f, in feet, rather than
directly in days or hours. Because of
the low m/S values, the C value in
equations [4] and [9] was selected
as 0.8. The constant ¢ in equation
[10] was taken as 1.2, to correspond
with the value ¢ = 0.1 foot per inch
suggested by Luthin (9, p. 44).

The comparison shows close agree-
ment between the integrated Hoog-
houdt equation and the van Schilt-
gaarde equation, Although the analy-
ses leading to these solutions differed
considerably, both were based on the
Dupuit-Forchheimer assumptions with
convergence correction through use of
d,. These two solutions also agree rea-
sonably well with the modified Tokstz-
Kirkham equation which avoids the
Dupuit-Forchheimer assumptions. This
mutual agreement lends support to the
use of the corrected Dupuit-Forch-
heimer assumptions as well as to the
technique of integrating the steady-
state equations.

Far poorer agreement is found with
the Glover equation, which appears to
be too dependent on the value of d.
The Kt/f values are affected by an in-
crease in d even when d is larger than
S/5, where d, is no longer affected
significantly by d (Fig. 2). The ab-
surd value of Kt/f = 0 for d = w0 is
a direct consequence of the assump-
tion upon which the equation is based.

Luthin and Worstell's equation also
failed to render a realistic solution.
Both the failure of the equation to ac-




count for the effect of the depth to an
impervious layer and the underesti-
mated effect of spacing can be observed
from the tabulation,

The agreement with Isherwood’s
data is good for the lowest d value. Poor
agreement at the higher d values may
be due to irregular trends in Isher-
wood’s results.

From the above comparison, it is
concluded that the integrated Toksoz-
Kirkham equation, the integrated
Hooghoudt equation and the van Schilf-
gaarde equation all give consistent re-
sults which are probably accurate
enough for field use. Use of either the
Glover equation or the Luthin and
Worstell equation is likely to result in
sizable errors.

The evidence in support of the tech-
nique of integration of steady-state
equations as used here also lends sup-
port to the validity of the proposed
numerical integration. In essence, it
accomplishes graphically the same pur-
pose as does the analytical integration.
It has the advantage that it enables one
to use as a basis data on the relation
between P and m obtained from model
studies, relaxation or iteration calcula-
tions; as well as from analytical formu-
lations., By using a family of such

curves, the trial-and-error procedure
for evaluating S is eliminated and S
can be determined directly.

SUMMARY

Steady-state drainage solutions are
analytically or graphically integrated
to predict the rate of fall (or rise) of
the water table midway between tile
lines or ditches. The procedure assumes
abrupt drainage of pore space. A fac-
tor C is introduced to account for the
non-uniformity of flux per unit area of
water table if the water table changes
in shape during recession. The proce-
dure is amenable to steady-state formu-
las or to graphical or tabular solutions
obtained by analogs, models, numerical
procedures, field experiments, or others.

Two integrated steady-state drainage
equations (by Hooghoudt and by Tok-
s6z and Kirkham) are compared with
four solutions developed specifically
for the falling water table. The tran-
sient formula by van Schilfgaarde ac-
counts both for flow convergence and
changing height of the flow system and
shows good agreement with the two
integrated equations, which also agree
mutually. The other three transient so-
lutions have some inherent weaknesses
and show poor agreement.

References

1 Bouwer, Herman. Theoretical aspects of flow
above the water table in tile drainage of shallow
homogeneous soils. Soil Sci. Soc. Am. Proc. 23
260-263, 1959,

2 Brutseart, Wilfried, Taylor, George S., and
Luthin, James N, Predicted and experimental
water table drawdown during tile drainage, Hil-
gardia 31:389-418, 1961.

3 Childs, E. C, The water table, equipoten-
tials, and streamlines in drained land. V. The
moving water table. Soil Sci. 63:361-376, 1947.

4 Dumm, Lee D, New formula for determin-
ing depth and spacing of subsurface drains in
irrigated lands, Agricultural Engineering 35:726-
730, 1954,

5 Gardner, W. R. Approximate solution of a
non-steady-state drainage problem. Soil Seci. Soc.
Am, Proc. 26:129-132, 1962

6 Hooghoudt, S. B. Bijdragen tot de kennis
van enige natuurkundige grootheden van de
grond. No, 7. Algemene beschouwing van het
probleem van de detailontwatering en de in-
filtratie door middel van parallel lopende drains,
greppels, sloten en kanalen, ’s Gravenhage, Alge-
mene Landsdrukkerij, 1940,

7 Isherwood, J. D. Water-table recession in
:tlisl;(ggrained land. J. Geoph. Res. 64:795-805,

8 Kirkham, Don and Gaskell, R, E, The fall-
ing water table in tile and ditch drainage. Soil
Science Soc. Am. Proc. 15:37-42, 1951,

9 Luthin, J. N. and Worstell, R. V. The fall-
ing water table in tile drainage. Transactions of
the ASAE 2:44-47, 51, 1959,

10 Toksoz, S. and Kirkham, Don. Graphical
solution and interpretation of a new drain-spac-
ing formula. J, Geoph. Res. 65:509-516, 1961,

11 van Schilfgaarde, Jan, Kirkham, Don, and
Frevert, R, K, Physical and mathematical theories
of tile and ditch drainage and their usefulness
in design. Iowa Agr, Exp, Sta. Bull, 436, 1956.

12 van Schilfgaarde, Jan. Approximate solu-
tions to drainage flow problems. In Drainage of
i&gg%cultural Lands, Am. Soc. Agron., 79-113,

13 van Schilfgaarde, Jan. Design of tile
drainage for falling water tables. J. Irr. and
r. Div,, Proc. Am. Soc. Civ, Eng. 89(IR 2):
1-13, 1963,







