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ABSTRACT

The closed conduit spillwayis any conduit having a closed cross section through which
water is spilled. The inlet and outlet may be of any type. The barrel may be of any size or
shape and may flow either full or partly full, Also, the barrel may be on any slope. This broad
definition includes the smallest culvert as well as the largest morning glory spillway.

The basic theoryof the flow is the same for each of the many forms which the spillway
may take. This paper discusses the control of the flow through closed conduit spillways by
weirs, the barrel exit, tailwater, pipe, orifice, and short tube, since each of these controls
may govern, at some time or other, the rate of flow through the spillway. The effect of these
various controls on the performance of the spillway is explained. A means of developing a
composite head-discharge curve is given. Pressures within the closed conduit spillway must
sometimes be determined, so the methods for this determination are presented. A selected,
bibliography useful to the understanding and for the design of closed conduit spillways con-
cludes this technical paper.
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NOMENCLATURE

area, in square feet

' length of rectangular drop inlet, in feet

effective length of rectangular drop inlet crest, in feet
discharge coefficient in Eq. I-1 and I-2, in English units
discharge coefficient in Eq. I1-7

discharge coefficient in Eq. I-8

critical depth, in feet

conduit diameter, in feet

drop inlet (riser) diameter, in feet

effective diameter of drop inlet crest, in feet
Darcy-Weisbach friction factor

acceleration due to gravity, in feet per second per second
friction head loss, in feet

local pressure deviation from the friction grade line, in feet
pressure head = p/w, in feet

velocity head in conduit = sz/Zg, in feet

head on crest, in feet

head on orifice, in feet @
head on short tube, in feet

total head from water surface to point at which the hydraulic grade line pierces the plane
of the outlet = H+ Z + ( -? -ﬁD) cos-l{sin S), or to the tailwater surface, in feet

entrance loss coefficient

outlet loss coefficient

length of conduit, in feet

crest length, in feet

Manning roughness coefficient, in (feet)l/a
number of observations

subscript ordinarily denoting a reference point but alsoused inconnection with the inlet
orifice and the outlet

pressure, in pounds per square foot

discharge per foot of width, in cubic feet per second
discharge, in cubic feet per second

subscript denoting riser or (drop) inlet

hydraulic radius = area + wetted perimeter, in feet
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conduit slope (sine)

slope of dam face (cotangent: one vertical on S! horizontal)
thickness of anti-vortex wall, in feet

velocity at any point, in feet per second

velocity in conduit, in feet per second

unit weight of water = 62,4 pounds per cubic foot

width of rectangular drop inlet, in feet

effective width of rectangular drop inlet crest, in feet
elevation, in feet

difference inelevationbetween inlet crest or conduit invert at inlet and centerline of out-
let, in feet

height of drop inlet, crest to invert of conduit at entrance, in feet

ratio of the distance above the invert at which the projected hydraulic grade line pierces
the plane of the conduit exit to the conduit diameter

vii






HYDRAULICS OF CLOSED CONDUIT SPILLWAYS

Part I

Theory and Its Application*

INTRODUCTION

The theory of the hydraulics of closed conduit spillways and a method of applying the
theory are presented inthis paper. Although methods for the designof the closed conduit spill-
way are explained, this paper is not complete by itself since the required quantitative values
of the constants are not given. This outline of the theory is intended to be Part I of a series.
Subsequent parts will present information on the hydraulic characteristics for the various
forms which the spillway may take., In addition, loss coefficients and pressure coefficients
will be given for the use of the designer.

Closed conduit spillway isa general term that covers many specific types of spillways,
In the Soil Conservation Service it is known as a 'drop inlet culvert," 'drop inlet spillway
with pipe conduit (pipe drop inlet spillway)," "trickle tube," "pipe outlet," "tube outlet," "tile
outlet," etc. The ordinary highway culvert is a closed conduit spillway. In large sizes the
closed conduit spillway is known as a "'morning glory," "bell mouth," "vertical shaft," etc.,
spillway. The closed conduit spillway assumes the characteristics of a siphon spillway when
the spillway operates with pressures that are less than atmospheric. As used here, a closed
conduit spillway is taken to mean a pipe or box culvert including the entrance and outlet. The
barrel may be on either a flat or a steep slope. The inlet and outlet may be of any type. The
outlet may be submerged or may discharge freely into the atmosphere. The conduit may be
designed to flow either partly full or full,

The analysis described here is the product of an investigation conducted by the staff of
the Soil and Water Conservation Research Divisionofthe Agricultural Research Service, U.S.
Department of Agriculture, located at the St. Anthony Falls Hydraulic Laboratory, University
of Minnesota, Minneapolis. There the Agricultural Research Service, the Minnesota Agricul=-
tural Experiment Station, and the St, Anithony Falls Hydraulic Laboratory cooperate in the
solution of problems concerning conservation hydraulics. This study was originally made un-
der the immediate direction of Lewis A, Jones, Chief, Divisionof Drainage and Water Control,
Soil Conservation Service Research, U. S.Department of Agriculture, Mr. Jones has now re-
tired. The study is continuing under the direction of Austin W. Zingg, CHief, Watershed Tech-
nology Research Branch, and Dr. C. H. Wadleigh, Director, Soil and Water Conservation
Research Division, Agricultural Research Service. Thanks are due Robert V.Keppel for cri-
tically reviewing this paper.

CAPACITY OF THE SPILLWAY

A number of different equations are used to compute the flow through closed conduit
spillways, That part ofthe spillway controlling the head-discharge relationship may be a weir
at the conduit entrance, an orifice at the conduit or the barrel entrance, a section of the con-
duit acting as a short tube, or the conduit flowing as a full pipe. These flow conditions are
sketched in Fig.I-1, It may be necessary to use fourtypes of equationsto determine the capa-
city of some forms of closed conduit spillways, but ordinarily the weir and pipe equations will
suffice. No attempt will be made here to explain which equations to use for any particular
spillway design. This will be left for the papers describing the performance of each form
which the spillway takes. Here the various equations that may apply will be described and
their use will be outlined.

Weir Flow

The first flow that passes through the spillway will be controlled by a weir at the en~
trance, as in Fig. I-la. For the weir to exercise the control over the head-discharge relation-
ship, the flow depth must be greater than the critical depth upstream of the weir and must

degrease throu%hthe critical depthinthe vicinity of the weir. This will be taken as a definition
of "weir control."

*Agricultural Research Service Report No, 41-505-48,



(a) Weir Control at Entrance " (b) Orifice Control at Entrance

+—Break oway point

{c) Short Tube Control (d) Pipe Flow

Fig. I-1 - Types of Flow Control

The weir at the entrance to the spillway may take any one of a number of forms. The
entrance to a box culvert may form a rectangular weir. The entrance to a pipe may form a
circular weir. A drop inlet crest may be horizontal and form a weir, either rectangular or
circular in plan. Although the weir may take other forms, the discussion here will be limited
to the three types mentioned, these being the types that are most commonly used.

Rectangular Weir

The general equation for flow over a rectangular weir is

Q=cLu/? (1-1)

where @ is the discharge in cubic feet per second, C is the coefficient of discharge, L is
the length of the crest in feet, and H is the head on the crest in feet. The symbols H and L
are also defined in Figs. I-la and I-2. In Fig. I-2 critical depth must occur near the culvert
entrance if Eq. I-1 is used to determine the discharge.

It may be more convenient in analyzing the data and easier to apply the results in cer-
tain instances if Eq. I-1 is presented in a semi-dimensionless form; the equation is written

Q L /H 3/2
= C—-— (1‘2)
Dslz D \D

where D is the conduit diameter, To convert to the form of Eq. I-l, it is necessary only, for
any given conduit size, to substitute a numerical value for D in Eq. 1-2,



Eq. I-2 is valid for any spillway which is geometrically similar to the spillway for which
C is evaluated, no matter what the size of the spillway may be. The use of D restricts Eq.
I-1 to geometrically similar circular conduit (pipe) spillways. However, Eq. I-2 can be used
for other conduit shapes if D is replaced by some dimension which characterizes the pro-
portions of the spillway. The advantage of Eq.I-2 is that because it acts like a dimensionless
expression, one determination of C permits the computation of the discharge for any number
of spillways that are geometrically similar in form.

The discharge coefficient C varies from about 2.5 to 5.7. Things which affect C are
the velocity of approach, the elevation of the weir crest above the approach channel, the width
of the weir crest, etc. It is therefore imperative that the value of C used in Eq.I-1 be care-
fully selected and that the selection be based on tests made as closely similar as possible
to those which exist at the weir under consideration. Reference can be made to a number of
standard texts to determine C, A fewofthese
texts are listed in the Bibliography.

Circular Weir

The circular weir is mentioned here,
not because the weir itself is used as the en-
trance to a closed conduit spillway, but be-_
cause the entrance to a pipe is circular. o

g
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Critical depth in

ed and no attempt will be made to present it
here. If it were presented, it would be nec-
essary to varythe discharge coefficient with
the approach and exit conditions and with the
form of the weir lip itself. From a practical
standpoint, then, it is preferable to present

Sectional Elevation

rating curves for the different conditions

which it is anticipated will arise These curves &l

can be presented--as Mavis [I-37],* Man- R T
ohar [I-36], Straub, Anderson, and Bowers St KRl fa e BN D
[1-50], and the author in Part X have done-- T %
in units which are independent of the pipe L

size; the coordinates H/D and C;‘),/DE’/2 will l
permit the determination of the head-dis-
charge curve for similar conditions no mat- 39
ter what the actual size of the pipe may be. k|
Here H is the head on the pipe invert in feet
and D is the pipe diameter in feet. Curves

of H/D versus Q/Ds/ 2 will be included in
the papers describing the results of testson Fig. 1-2 - Rectangular Weir at a Box Culvert Entrance
various types of inlet structures.
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23 Sectional Plan

Drop Inlet Weir

A drop inlet is used as the entrance to many closed conduit spillways. For this reason
a discussion of weir flow over the drop inlet crest is pertinent,

The drop inlet may be either rectangular or circular in cross section. In addition a
headwall may or may not be used, depending possibly on the hydraulic design or on the will-
ingness of the designer to take a chance that vortices will not form or that those vortices
which do form will not reduce the anticipated capacity of the structure.

The head-discharge relationship for weir flow is givenby Eq. I-1.If a headwallis used,
the crest length is reduced by the length occupied by the headwall, If the crest is square-
edged its effective length is measured on the inside of the drop inlet as in Fig, I-3a. If the
crestis rounded--a better practice--the crest length may be measured, for all practical pur-
poses, at the point of tangency with the horizontal, as in Fig, I-3b.If the upstream corners of

*Numbers in brackets refer to Bibliography listed on p. 17.



the diametrical headwall are square-edged, they can cause contractions that reduce the effec-
tive length of the crest. However, the relatively thin wall is insufficient to secure full con-
traction and the effectof what contraction exists will be taken into account indetermining the
discharge coefficients of those crests reported in subsequent parts of this report series. If
other sources are utilized to determine C in Eq. I-1 and full contraction exists, Francis*
suggests that the crest length be reduced by 0.l1H for each contraction or, for the two con-
tractions here, by 0.2H. If a tangent wall is used with a circular drop inlet, radial access of
the flow to the dropinlet is partly cut off. For this condition, shown in Fig, I-3d, the effective
crest length is taken as Dr + err/2. The reasoning is apparent from the streamlines sketch-

ed in Fig. I-3d, which shows that the flow is radial for about one-half the circumference and
parallel to the headwall for the other half,
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Section A-A Plan Section A-A Plan
(a) Rectangular Drop Inlet, Square—Edged (b) Rectangular Drop Inlet, Rounded Crest,
Crest, Tangent Anti—Vortex Wall Tangent Anti-Vortex Wall
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.L"\J
™
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Lc 1 1 |t
f J
'!
L= D—2t ~
Section A-A Plan Section A-A Plan
(¢) Circular Drop Inlet, Rounded Crest, (d) Gircular Drop Inlet, Square-Edged
Diametrical Anti-Vortex Wall Tangent Anti-Vortex Wall

Fig. |-3 - Crests of Drop Inlets

When the conduit is flowing full of a mixture of water and air, there is a suction crea-
ted in the drop inlet which serves to increase the effective head on the weir. This increase
ineffective head is usually small and ordinarily may be neglected and considered as an addi-
tional safety factor. It will be discussed in subsequent researchreports for those drop inlets
where it can be detected.

Barrel Exit Control

The exit of the barrel may exercise primary control over the head-discharge relation-
ship. Three criteria are important in this connection: (1) The barrel slope must be less than
the friction slope; (2) the flow along the entire length of the barrel is at a velocity less than
the critical velocity; and (3) critical depth must occur at the barrel exit. The inlet does not
control the head-discharge relationship, although the entrance loss will influence this rela=-
tionship., The friction slope is hf/.l!--the friction head loss per foot of conduit.

*Reference [I-31], p. 82.



The head atthe barrel inlet when the controlis at the barrel exit is determined by add-
ing the friction loss inthe barrel, the entrance loss, and the velocity head to the critical depth
at the barrel exit.

The critical depth in a rectangular section is given by the equation

(1-3)

Where dc is the critical depth in feet and q is the discharge per foot of width in cubic feet

per second, The critical depth depends on the water surface width, Because the surface width
varies with the depth of flow for circular barrels, the determination of the critical depth in a
circular section is not as easy as for a rectangular section. Woodward and Posey [I-54] give
a table that facilitates the determination of the critical depth in circular sections. Critical
depths in trapezoidal sections are given in Reference [I-49]. Critical depths in other cross-
sections less commonly used may be found using the criterion that the velocity head is equal
to half the average depthof flow, the average depthof flow in this case being the area of flow
divided by the surface width.

Tailwater Control

The tailwater level will affect the head-discharge relationship if the barrel is only part-
ly full and the depth of flow is greater than the critical at every point within the spillway.
Such conditions may be found frequently for highway culverts in regions having flat ground
slopes. If the tailwater level affects the head-discharge relationship it will be necessary to
compute a backwater curve to determine the headwater elevation. The rate of flowthroughthe .
conduit is determined using open channel flow procedures. Methods for the computation of
water surface profiles and rates of flow may be found in References [I-44] and [I-49].

Pipe Flow

The head-discharge relationship is governed by pipe flow equations whenthe conduit is
completely full as in Fig,I-1d. For this condition the head Ht causing ftow is the difference

in elevation between the headwater surface andthe point where the hydraulic grade line pierc-
es the plane of the conduit exit, which is usually assumed as the center of the conduit at the
plane of its exit. If the outlet is submerged, Ht 1s measured from the headwater surface to

the tailwater surface. This head is entirely consumed in causing water to flow through the
spillway, The head consumed is given by the equation

2 2, aN\]v ?
H=K +K+..,.+{—+f T, T B (1-4)
D 4R \A. 2g
and the discharge is given by the equation
:er2 2g Ht
Q=AV_= > (1-5)
Py 2 L[ A
K +K +...+f— +f _
e o]

D T4r_\A
r r

where D is the pipe diameter for circular pipe, K, is the loss coefficient for the drop

inlet and/or the entranceto the barrel, KO isthe exit loss coefficient, f is the Darcy-Weis-

bach friction coefficient for the barrel, £ is the length of the barrel, R is the hydraulic
radius of the drop inlet, A is the area of the conduit, and V_ is the velocity in the conduit.
The subscript r refers to the drop inlet or riser. P

A few of the terms used in Egs. I-4 and I-5 require elaboration, Strictly, Ht is meas-

ured to the point at which the hydraulic grade line pierces the plane of the pipe outlet when
the outlet is not submerged. See Fig. I-1d. Since the exact location of this point is stillan open



question (see Part X and References [I-19], [I-45] and [I-33]), it has been assumed to be at
the center of the pipe in Parts II to IX inclusive, except for the work of Ree [I-42] reported
in PartIX.In Part X the hydraulic grade lines used in the computation K did not necessar-

ily pass through the center of the conduit exit but were in their correct positions. Also, Ke

is the loss in the entrance in excess of any friction loss, the last term in the brackets of Eq.
I-4 being the inlet friction loss; K‘e includes the losses at the inlet which are not susceptible

of determination otherwise. Ke will be evaluated for each entrance on which tests are made
and will be given in subsequent reports. The hydraulic radius of the drop inlet Rr is used in

place of the diameter to take care of drop inlets that do not have a circular cross-section. It
should be substituted also for the conduit diameter D if its cross section is not circular.
The term 4R is equivalent to D, as can be seen from the following derivation of the hy-
draulic radius for a circular pipe.

area 7D/ 4 D
R = = ==
perimeter 7D 4

or
D = 4R

Therefore, the term 4Rr is the equivalent diameter of the drop inlet, If the area of the drop

inlet is different from that of the barrel, the average velocity in the drop inlet will also be
different. Since the barrel velocity is used in the subsequent computations, a correction must

be applied. This correction is (A/Ar}z.

The friction coefficient f is the Darcy-Weisbach value and not the more familiar Mann=
ing n. It is suggested that f for smooth concrete pipe and plain corrugated metal pipe be
taken from the paper reporting tests conducted at the St. Anthony Falls Hydraulic Laboratory
[I-51]. Ree [I-42] gives values of the frictioncoefficient for rougher concrete pipe and for paved
invert corrugated metal pipe. The friction coefficient for large, corrugated metal pipe was
determined at the Bonneville Hydraulic Laboratory of the Corps of Engineers [I-14]. Rouse
[1-43, I-44] also presents curves that may be used to determine # for a number of different
pipe materials. For those who are more familiar with the Manning coefficient and prefer to
use it, the equation for converting from the Manning n to f is

185n2
T (1-8)
IRVE

The conversion from n to f is given in Table I-1 for a number of pipe diameters and values
of n. Also, values of Kp = f/D and Kc = fr/4Rr computed for various conduit sizes and

Manning's n values may be found in Reference [I-49], section 5.5.1, drawing ES-42 for those
who are more familiar with these coefficients.

It should be especially noted that the Manning n and the Kutter n are different and are
not interchangeable., For smooth surfaces the values are almost identical, but for corrugated
metal surfaces the Manning n is larger. According to Straub and Morris [I-51], the Manning
n recommended in some handbooks is too low, the indication being that the lower Kutter n
has been substituted for the higher Manning n assuming that, as Manning originally intended,
the two n values are interchangeable.

If there are bends, changes in pipe size, two or more kinds of pipe, etc. used in the con-

duit, it will be necessaryto add terms to the brackets of Eq.I-4 and to the denominator under
the radical of Eq. I-5 to take these additional sources of loss into consideration.

Orifice at Entrance

The head-discharge relationship sometimes may be controlled by the entrance acting
as an orifice, For some forms of the inlet this is not a desirable condition. It is especially
undesirable when the orifice control extends over a considerable range in head where orifice



TABLE I-1
CONVERSION OF MANNING'S n TO DARCY-WEISBACH FRICTION FACTOR f
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control alternates with full conduit flow. When the control can alternate between the orifice
and the full conduit, it is possible to have twodischarges at anidentical head and it isnot pos- -
sible to predict which section exerts the control at any one time. However, since orifice con-
trol may exist for some forms of closed conduit spillways, their hydraulic characteristics
will be outlined.

The orifice may be horizontal, as at -
the crest of a dropinlet (Fig.I-1b); or it may
be nearly vertical, as at the entrance of a
barrel havinga simple inlet orno inlet at all
(Fig.I-4)or a dropinlet sufficiently large so
that the controlling orifice is at the barrel
entrance rather than at the drop inlet crest.
For the former case the head HO is meas-

ured from the crest and for the latter case it
is measured from the center of the entrance,
The discharge equation in either case is

Q = COAH01/2 (1-7)

where C_ isa discharge coefficient that will Fig. I-4 - Orifice Control at Conduit Entrance
vary with the inlet conditions, It, like the weir
coefficient, should be selected carefully since it can vary between rather wide limits,

It should be recognized that itis possible to have orifice control at the inlet of the bar-
rel even though the barrel ison a slope less than the friction slope for uniform flow. Another
way of saying the same thing is: The barrel may flow partly full with the inlet submerged even
though the barrel slope is such that normally the barrel would be expected to flow full. The
form of the inlet is important in this connection, If the inlet form is such that the stream con-
tracts sufficiently so the velocity in the contracted section is greater than both the normal
velocity and the critical velocity in the barrel, then the excess velocity head energy must be
expended by friction and/or turbulence, and/or converted to depth energy. It usually takes
some distance to accomplish this. The distance required to insure a depth of flow equal to
the barrel height can be determined by computing the water surface profile. The velocity in
the contracted section can be used as a starting point for these water surface computations
if the orifice contraction coefficient is knownor can be estimated. Methods given in References
[I-44] and [I-49] may be used to determine the water surface profile. If the barrel is so short
that the depth in the barrel never equals the barrel height, then the barrel will not flow full
and the entrance acting as an orifice controls the head-discharge relationship. Straub, Ander-



son, and Bowers [I-50] have shown how the barrel length affects the capactiy of the culvert,
The reasoning given in this paragraph doesnot apply if the velocityin the barrel is less than
the critical velocity.

Short Tube at Entrance

When the dropinletis full but the barrel is only partly full, as in Fig.I-lc, the condition
is that of a short tube control. As observed to date, short tube control is a residual type of
flow occurring after the headpool level has risen under orifice control and has been drawn
down under pipe flow. It is not a desirable condition since it is possible to have three differ-
ent discharges at identical heads--that is, orifice controlled discharge, short tube controlled
discharge, and pipe or weir flow controlled discharge, In fact, with certain constant rates of
flow to the spillway, the control shifts from point to point with accompanying fluctuations in
head and discharge and it is not possible to predict the outflow with certainty at any given
time,

The equation for short tube flow is

- 1/2
Q= C, AHg (1-8) 50 1% B Orifice / [short Pipe | |
28 |2 8 [control A [tube flow ——
where C_ is a discharge coefficient which Eq. T-T-—-/ control | Eq.I-5
varies with the various forms of short tube, :,21? !}?, H?'L ALE s
Thehead H_ isassumed to be thedifference 34 g 34 /
between the water surface and the point in the / Jr——"
dropinlet where the water breaks away from & B2 L——m /
the drop inlet wall. This is shown in Fig.I-lc. 30 40 </ 0, |-
Eq.I-8 tacitly assumesthat the short tube is /| Eq T /
not so longthat frictionlosses are important, 18 2 7 ;' —
6 0| =
The Composite Head-Discharge Relationship v /
I
The head-discharge curve for the spill- |2 /
way can be computed now that the equations I!
governing the four types of flow have been 10 - r
established. Curves representing these equa- Z ‘,’
tions are shown in Fig. I-5. 8 7
/
It will be noticed in Fig. I-5 that the 6 B 7
origin of heads has been shifted downward 4 | /
for the short tube and pipe curves so that the /
headpool level is always measured from the 2 | z
same point onthe plot, In the case of the short i
tube curve the shift downward is equal to the o 1 L=<
effective height of the drop inlet. In the case O 12 3 4 5 6 7 8
of the pipe flow curve the shift downward is Q
equal to the difference between the crest of
the inlet and the point where the hydraulic
grade line passes through the plane of the con- Fig. -5 - Typical Head-Discharge Curves
duit exit, since the outlet is not submerged, (See Fig.I-1for typical sectional ele-
This shift in the origin is important in deter- vations of types of flow control.)

mining the point at which the control shifts
from one curve to the other. The orifice in
this example is at the entrance, as it is in Fig. I-1b, and in this case HO = H.

Hypothetical Portions of the Head-Discharge Curve

It will be noticed that some portions of the head-discharge curves presented in Fig.I-5
are dashed. These are computed portions of the curves which never actually govern the head-
discharge relationship. Explanation of this may be found in the following paragraphs,

The section of the orifice curve below the weir curve never determines the head-dis~
charge relationship because there isinsufficient flow to fill the orifice. Similarly, the section
of the short tube curve below the weir curve does not control the head-discharge relationship



because its demand for water is greater than can be supplied through the inlet with the head
available over the inlet crest. These sections of the curves are hypothetical and imaginary,
and so have been dashed.

The portion of the pipe flow curve below the weir curve is dashed; the pipe cannot con-
trol the flow because there is insufficient water to completely fill the pipe. In fact, there can

be no flow at all through the pipe until H, exceeds Z + ( —?—- -BD) coa'l (sin S). The capacity
of the pipe is greater than the flow to it until the pipe flow curve crosses the weir flow curve,

The portion of the weir curve to the right of the pipe curve cannot control the flow be-
cause for these high discharges the weir is flooded out. The portion of the weir curve which
is hypothetical and imaginary is dashed.

The remaining solid portions of the rating curves will control the flow through the
closed conduit spillway, However, the intersections of the curves may be rounded rather than
abrupt as indicated in Fig. I-5. Also, the highest heads at which the orifice and short tube
curves apply are indeterminate., This is because the disturbances caused at the elbow shown
in Fig.I-1lb or Fig.I-lc by the falling stream seal off the barrel at the upper end and the bar-
rel rapidly fills. The discharge then abruptly jumps over to the pipe flow curve., The head at
which this occursis indeterminate analytically and cannot be predicted accurately from tests
because it may be different each time it occurs, The control exercised by the pipe curve is
definite and this curve can be extended upward indefinitely,

The indefinite upper limits of the orifice and short tube curves make it impossible to
predict the reservoir level at intermediate flows. The fact that three different rates of flow
through the spillway can be obtained for the same head also is undesirable. It is possible to
design closed conduit spillways so that the orifice and the short tube can exercise no control
over the head-discharge relationship. This is certainly a desirable situation, for then the two
sections of the head-discharge curve representing the orifice and the short tube controls are
eliminated and the remaining two sections, representing the weir and the pipe, serve to con-
trol the flow through the spillway. Then for any givenreservoir pool elevation the computation
of the discharge capacity can be made with confidence since it is possible under these condi-
tions to have only one rate of discharge for any reservoir level. The principal reason for in-
cluding the orifice and short tube curves in Fig,I-5 is to show what can happen if these sec-
tions do control the flow,

Appearance of the Flow

When the weir controls the head-discharge relationship there is always adefinite draw-
down in the inlet, as is shown in Fig. I-1a. Up to the point where orifice control takes over,
the nappe usually falls free down the drop inlet, but at low heads it may cling to the sides of
the drop inlet, Between the points where the orifice and short tube curves intersect the weir
curve of Fig,I-5, the water is still well drawn down at the inlet but the drop inlet is full of a
mixture of air and water. Between the points where the short tube and pipe flow curves inter-
sect the weir curve, the water surface in the inlet has the same appearance as previously but
both the drop inlet and barrel are full of anair-water mixture. Thus, it is possible in the field
torecognize weir control by the pronounced dropdown of the water surface over the inlet. Air
will be sucked through the spillway, sometimes noisily, when the weir controls the flow.

For orifice, short tube, or pipe flow there may be a slight depression of the water sur-
face over the inlet but not the deep depression characteristic of weir control. Normally, no
air passes through the spillway when the control is orifice, short tube, or pipe but some air
may be sucked in through vortices. For orifice flow the drop inlet will be partly full, as in
Fig. I-1b, unless the orifice is at the barrel entrance at the base of the drop inlet; for short
tube flow the drop inlet will be full, as in Fig.I-1lc; and for pipe flow the conduit will be com-
pletely full, as in Fig. I-1d.

Change of Control

It isof interest to describe how the control changes from one section to another, First,
the four types of flow shown in Fig.I-5 will be assumed to exist. Second, flow througha better
type of spillway where only the weir and the pipe control the flow will be described.

According to the curves of Fig,I-5 the weir will control the flow when the discharge is
less than about 0.9, This control is definite and is not shared with any other section of the
spillway.
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When the flow to the spillway is greater than 0.9, the head will increase first along the
weir curve to its intersection with the orifice curve thenalong the orifice curve, At some un-
known pond or reservoir level the outflow rate will jump abruptly from the orifice curve to
the pipe curve. The pipe may control the discharge if the rate of inflow to the pond is great
enough. If the outflow rate exceeds the inflow rate, the reservoir is drawn down first along
the pipe flow curve to its intersection with the weir curve then along the weir flow curve. The
flow may stabilize on the weir flow curve or it may jump to either the short tube or orifice
curves, possibly resulting in a further buildup of the headpool level and a repetition of the
cycle. As observed to date, the jump across is always to the pipe curve from either the ori-
fice or short tube curves and never to the short tube curve from the orifice curve.

While the weir can control the flow to the right of the intersection of the orifice and
short tube curves of Fig. I-5, the head and discharge along these sections of the weir flow
curve cannot be reached directly. The pond level must first rise along the orifice curve, the
flow must jump to the pipe flow curve, and the reservoir level must fall along the pipe flow
curve to reach these sections of the weir curve. Similarly, the short tube control is not
reached directly but is a residual condition that may exist only after pipe flow and the subse-
quent drawdown of the reservoir through the upper section of the weir curve.

In contrast to these unsteady and unpredictable flows just described, a spillway design
which insures that orifice and short tube flow will not exist also insures that a definite head-
discharge relationship can be established. This relationship is given by the weir and pipe
curves of Fig, I-5, With increasing flow to the spillway the discharge is determined first by
the weir curve and then, after the capacity of the weir is exceeded, by the pipe curve. The
transfer of control between the two curvesis gradual and reversible--not abrupt and irrever-
sible as for the orifice and short tube controls. The head-discharge relationship is dependable
for both increasing and decreasing flows to the spillway.

It should be recognized that the flow into the reservoir can be either greater or less
than the flow throughthe closed conduit spillway; the difference between inflow and outflow is
stored in or withdrawn fromthe reservoir and serves to increase or decrease its level. How-
ever, for any given constant rate of inflow, the pond level will eventually stabilize if the weir
and the pipe alone control the flow. In contrast, when orifice and short tube control are also
present, the reservoir leveland the spillway flow may never stabilize but will alternately rise
and fall as the control shifts from one section to another.

PRESSURES WITHIN THE SPILLWAY

The pressures in the closed conduit spillway and in its inlet depend on the type of flow
in the spillway as well as on the discharge and on the form of the spillway. It is convenient
to divide the ensuing discussion into sections dealing with the conduit partly full, the inter-
mediate flow conditions, and the conduit completely full,

Conduit Partly Full

When the conduit is partly full, the normal pressures on the invert should be approxi-
mately equal tothe depth of flow, Improperly aligned joints or similar disturbances may cause
local increases or decreases in the pressure. Ordinarily, these pressure changes will be un-
important, but the possibility of cavitation and its resulting damage should not be overlooked
where the velocity is high. The remedy for this isin better construction, and it should not be
considered a hydraulic problem within the scope of this paper.

Water falling down a drop inlet may cause high local pressures at the foot of the drop
inlet and on the barrel invert at its entrance. For the usual case these pressure increases
over the normal pressures will not be sufficient to cause concern.

Pressures at any point in a conduit flowing partly full can be expressed in terms of the
conduit diameter or of some other pertinent dimension (for example in terms of hp/D) and

can be converted into prototype pressures by multiplying this ratio by the proper dimension--
in this case, the pipe diameter,

Intermediate Flow Conditions

For intermediate flow conditions the conduit is alternately partly full and completely
full, or is continuously full of a water-air mixture. In other words, intermediate flow condi-
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tions cover the range between continuous open channel flow and continuous full conduit flow.
Alris carried along with the water either intermittently or continuously when flow conditions
are intermediate.

Particularly when the conduit is on a slope steeper than the friction slope, there is a
range of discharge where the conduit alternates between part-full flow and where occasional
hydraulic jumps form near the barrel entrance, completely fill the barrelcross section, and
travel down and out the conduit. The traveling hydraulic jumps suck considerable air along
with them. The pressure fluctuates for these conditions. The range of fluctuation of the pres-
sures is from a normal maximum equal to the depth of flow, to a minimum which is greater
than the minimum observed later on and which therefore does not influence the design. With
increasing discharges the frequency of the traveling hydraulic jumps increases until the con-
duit is flowing completely full of a water-air mixture, The pressures are low but are steady
for this flow condition. With further increases in the discharge, the air flow decreases until
the conduit flows completely full of water alone. The minimum pressure occurs at this latter
discharge, Methods of determining the pressures for full pipe flow are given in the following
section,

Water-air mixture flow also occurs for drop inlet spillways when the barrel is on a
slope that is less than the friction slope but the traveling hydraulic jumps may not occur,

Conduit Completely Full

A knowledge of the pressures for the condition of full pipe flow is of considerable im-
portance because for some closed conduit spillway designs it is possible to have pressures
that are close to absolute zero. Pressures close to absolute zero imply that cavitation may
take place which, if sufficiently severe, can result in the complete destructionof the spillway,

The analysis of the pressuresis made in such a way as to separate the pressure effects
due to conduit length, total fall, and friction from those pressure effects caused by local dis-
turbances. Local disturbances may originate at the entrance, bends, etc. They cause local
deviations of the hydraulic grade line from its normal position. Local pressure deviations
are determined experimentally. The method of analysis given here simplifies their applica-
tion by the designer. In other words, because the local pressure effects are given indepen-
dently of the total fall or roughness they can be applied to any conduit length, to any total fall
of the conduit, or to any conduit roughness. Therefore, the pressure which can be anticipated
under field conditions is determined by adding algebraically the local pressure effects to the
pressure effects resulting from the conduit length, fall, and friction. Also, the analysis is
made insuchaway as to compensate for the actual size of the conduit and the actual quantity
of water flowing in the conduit, the only restriction being that the conduit is full. Thus, one
relative local pressure value can be used to compute, at any one point in the spillway, the
actual local pressure for any conduit size and any rate of flow provided the conduits are geo-
metrically similar,

The pressureat any point in the conduit is determined by computing the unknown pres-
sure at the point under consideration from the known pressure at some reference point. The
Bernoulli equation

Voz b, v2

+—+2z = —+—+z+h+... (1-9)
9 o 9 f
g w g w

is used for this purpose where V is the velocity in feet per second, p is the pressure in
pounds per square foot, w is the unit weight of water in pounds per cubic foot, z is the ele-
vation of the point in feet, and hf is the friction head loss betweenthe two pointsin feet. The

subscript o denotesareference point in a zone of uniform flow. The reference point is here
taken at the point where the hydraulic grade line pierces the plane of the conduit exit, or at
the center of the exit if the hydraulic grade line position is unknown. To the right side of Eq.
I-9 should be added any additional losses that occur between the conduit exit and the point in
question, These losses may be due to bends, expansions, contractions, etc.

Eq.I-9 may be reduced to adimensionless basis. This both simplifies the experimental
work and broadens the subsequent application to design problems. Dividing by the reference
velocity head and rearranging, Eq. I-9 becomes



12
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In this paper the reference velocity is assumed to be the mean velocityin the barrel, and the
reference point for elevation and distance is the point where the hydraulic grade line pierces
the conduit at its exit end; at this point Zgs P and £ are zero. The length 2 is measured up-

stream along the axis of the barrel and is negative in sign--a fact that must be remembered when detemmining
the sign of h,. Replacing Voz/zg by the symbol hvp' p/w by hp, and substituting the values
of z, and Py in Eq. I-10, its form becomes

h +z+h +... v\
P = 15— (1-11)
h v
vp o
T
o
T LE
hy (=) <=
~ ~\. .
H, ] - e e
T "'lh..- " . \"-...\;
hn(_]
S Friction grade line
he (=) — Hydraulic grade line
z (+)
-—‘L-l--- st e ——- DatumM e T

(a) Sloping Barrel

__-___J[—Fricﬂon grade line—

'3 Hydraulic grade Iine—/

(b) Horizontal Frictionless Barrel

Fig. 1-6 - Typical Hydraulic Grade Line

The pressure head hp, the elevation z, and the friction head hf are defined in Fig, I-6a.

There it can be seen that z is the elevation of a point in the conduit above the datum plane
and that h_ is measured from the elevationof that point to give the elevation of the hydraulic

grade line hp + z. The friction head hf is measured upward from the datum plane but is

negative in sign because the point being considered is upstream from the reference point,
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The sum of (+or -) hp, (+or =) z, and (=) h is symbolized by (+ or =) hn or

hn=hp+z+hf+... (I-12)

The term h_ represents the departure of the hydraulic grade line from the friction grade
line; hn also represents the local pressure variation from the fricition grade line resulting
from some disturbance such as, for example, the conduit entrance; and hn can be considered

to give the elevation of the hydraulic grade line for a horizontal frictionless conduit since it
represents the pressure remaining after the effects of elevation and friction(and bends, etc.,
if applicable) are taken into account.

Combining Egs. I-11 and 1I-12,

h v \2
n__ . (1-13)
h\fp VO

Inwords, Eq.I-13 states that the local pressure head for a hypothetical horizontal frictionless
conduit hn relative to the mean velocity head in the pipe hvp is a function only of the ratio

of the local velocity V to the mean velocity in the conduit Vo. For flow in any dynamically
similar spillway the ratio V/V0 is identical for any similarly located point within the spill-
way. It follows from Eq.I-13 that the ratio hn/hvp is alsoidentical for any similarly located
point within a dynamically similar spillway. Therefore, if hn/hvp is determined for anyclosed
conduit spillway, it is identical to hn/hvp for any other dynamically similar spillwayno mat=-
ter whether it be small enough to test in a hydraulic laboratory or large enough to pass a
major flood.

Once hn/hvp has been determined in the laboratory, the value of hn can be computed
for any size spillway if the discharge is known so that hvp can be computed. Also, since
hn/hvp is the same no matter what the flow through the full conduit may be, the value of hn
for any flow may be determined by computing the value of hvp for that discharge and multi-
plying the result by hn/hvp' The interesting and valuable deduction is that a single deter-

mination of hn/h will permit the computation of hn for any size of geometrically similar

vp
spillway as well as for any rate of full conduit flow through the spillway.

Rouse [I-43, pp. 80 to 85] has explained these relationships in slightly different terms.
Reference may be made to this text for further information,

Values of hn/hvp for the hydraulic grade line of Fig.I-6a are givenin Fig, I-6b, There
it will be noticed that hn/h‘.rp is zero for most of the conduit length and only near the en-
trance--a local disturbance--does h“/hvr deviate from zero. A zero value of hn/hv in=

dicates that there is no local disturbance to affect the pressure and that the hydraulic grade
line can be drawn by plotting the friction and other losses. Near the entrance or in the vicinity
of other disturbances it will be necessary to take hn/hvp into account and add it to the fric-

tion and other losses. Whether the conduit is under pressure or whether a partial vacuum
exists depends on whether the conduit is below or above the hydraulic grade line.
The designer is interested in determining the pressure head hp at a number of points

in the structure with which he is working, This is accomplished by rearranging Eq. I-12 to
the form

= —— X h_ - ~hy - 4. (I-14
h P z )
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and substituting the proper values of hvp' Z; hf, etc., for his particular structure together
with values of hn/hvp selected from the results of tests on a spillway which is dynamically
similar to his., Values of hn/hvp for various types of closed conduit spillways will be given
in subsequent papers in this series.

If the computed value of hp is less than about -25 ft to -28 ft of water, the designer

should be concerned about the possibility of cavitation damage and should give consideration
to a change that will raise hp. This may be accomplished by using rougher pipe, by lowering

the pipe, etc, The minimum value of hIJ will ordinarily occur near the conduit entrance or

at some other disturbance that serves to lower the pressure and at the discharge which exists
when the conduit just flows completely full of water, that is, at the beginning of pipe flow.

APPLICATION OF THEORY

The first step in applying the theory as outlined here is a determination of the head-
discharge relationship--or a determination of the capacity of the spillway if the complete
head-discharge curve is not needed. It is presumed here that the preliminary computations
have determined the form and dimensions of the spillway.

The capacity of the spillway, if it is known that only weir and pipe control are present,
is determined by computing the discharge for the design head assuming both weir and pipe
control, The lesser discharge is the correct one. In making these computations the weir head
is, of course, measured fromthe weir crest and the pipe head fromthe tailwater levelor from
the center of the outlet or, more precisely, from the point where the hydraulic grade line
pierces the outlet plane. The discharge coefficient of the weir is taken from some later part
of this report series or from some other reliable source. The coefficients in the pipe formula
(Eq.I-5)also are taken from some reliable source wherein the gpillway form is the same as
is to be used in the spillway under consideration., The friction factor for the pipe is also ob-
tained from some reliable source. A few sources of informationare given in the Bibliography.

If a rating curve for the spillway is desired, it will be necessary to compute the dis-
charge for a number of heads. The head and discharge should be plotted as in Fig, I-5 with
the origin of head for pipe flow offset so that the plotted heads always refer to the crest of
the weir. The lesser discharge at any given head computed us'ing both the weir and the pipe
formulas is what actually passes through the spillway, the greater indicated discharges being
purely imaginary since only one section of the conduit controls the flow at any one time.

Whether or not orifice and short tube flow are possible in a spillway can be determined
by reference to the partof this report series which covers the form of the spillway being con-
sidered. If these controls exist their capacity should also be determined. A minimum head at
which each control becomes effective is determined from a plot similar to Fig. I-b or by
equating the weir and orifice or short tube equations. The maximum head at which each con-
trol is effective can be approximated by referring to the pertinent part of this report series.
If there is uncertainty as to whether orifice or short tube control is present in some design
which has not been tested, these controls can be assumed and the discharges can be computed.
It is safe to suppose that the control is not as assumed if the computed discharge at any head
is greater than weir or pipe flow. Conversely, lesser computed discharges indicate the pos-
sibility of orifice or short tube control, as the case may be.

The pressures for part-full flow are low and ordinarily will be of no concern, Usually
it will not be necessary to compute them. If their determination becomes necessary they can
be computed from the common equations dealing with open channel flow. These equations
should give satisfactoryresults except in the vicinity of the inlet, or at other locations where
there are disturbances that affect the pressures,

Pressures for intermediate flow conditions fluctuate widely and cannot be reliably de=-
termined at any instant. Since the range of pressure is between those observed for part-full
flow and those observed for full flow, it is not necessaryto actually determine them. The suck=-
ing of air and the possible vibration of the structure make intermediate flow spectacular. The
air flow and noise are presumably of little practical importance, The vibration may or may
not be important.
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Minimum pressures will ordinarily occur for the discharge where weir control changes
to pipe control, that is at the minimum discharge for full pipe flow. The pressure in the con-

duit is determined from Eq. I-14, Except in the vicinity of disturbances, hn/hvp is zero, If

there are no disturbancesin the spillway the pressures can be computed without recourse to
model studies. If disturbances exist, the pressures in their vicinity miast ordinarily be deter-
mined experimentally. Values of hn/hvp for each spillway tested will be given in subsequent

parts of thisreport seriesand reference should be made to them to determine hn/hvp' Harris
[I-23] has shown that hn/h“rp can be as low as -1.27, It is therefore important to determine
the minimum values of hp to make sure that the pressure is not so close to absolute zero

that the water will vaporize, cavities form, and subsequently collapse. If the collapse takes
place next to the wall of the spillway the concrete and the steel may be eaten away and even-
tually the structure may be destroyed. This is the process known as "cavitation,
SUMMARY
The theory of closed conduit spillways may be summarized as follows:

1. The capacity of the spillway, when the control is

a. a rectangular weir, is given by the equation

Q = cLH3/2 (1-1)
or, in the semi-dimensionless form, by the equation
3/2

Q L (H
-c _(_.) (1-2)
Dafz D \D

b. a circular weir, is obtained from experimentally determined curves of the dimen-
sionless head-discharge relationship;

c. adrop inlet weir, is given by Eqs. I-1 or 1-2, the proper value of L being deter-
mined from the geometry of the crest and the presence or absence of head walls;

d. the barrelexit, is determined by the critical depthat the barrel exit plus the losses
to that point;

e. the tailwater level, is determined using the methods for the determination of the
rates of flow in open channels;

f. pipe flow, is given by the equation

7D? 2g H,
Q = 3 (I-5)
4 2 £ A
K 4K 4,00+ o pf et o
g 8 D T4r_\A
B i r
g. anorifice at the entrance, is given by the equation
. 1/2
Q COAHO (I-7)

h. a short tube at the entrance, is given by the equation
. 1/2
Q=C_AH_ (1-8)

2. Orifice and short tube control of the flow are ordinarily undesirable and should be avoid-
ed by proper design. Examplesof proper and improper design are given in subsequent
parts of this report series,
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3. The head and discharge at which the control changes from one point to another can be
determined from the head-discharge curve,

4, The pressure head in the conduit for

a. part-full flow is approximately equal to the depth of flow except near the conduit
entrance;

b. intermediate flow fluctuates between the pressure for part-full flow and the pres-
sure for full pipe flow (considerable air is sucked through the structure under these
conditions);

c. pipe flow is given by the equation
hn
h=----th-z-h-... (I-14)

P 4 P f
vp
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